Skip to main content

Inherited Ventricular Arrhythmias: The Role of the Multi-Subunit Structure of the L-Type Calcium Channel Complex

  • Chapter
  • First Online:
Protein Reviews

Part of the book series: Advances in Experimental Medicine and Biology ((PROTRE,volume 966))

Abstract

The normal heartbeat is conditioned by transient increases in the intracellular free Ca2+ concentration. Ca2+ influx in cardiomyocytes is regulated by the activity of the heteromeric L-type voltage-activated CaV1.2 channel. A complex network of interactions between the different proteins forming the ion channel supports the kinetics and the activation gating of the Ca2+ influx. Alterations in the biophysical and biochemical properties or in the biogenesis in any of these proteins can lead to serious disturbances in the cardiac rhythm. The multi-subunit nature of the channel complex is better comprehended by examining the high-resolution three-dimensional structure of the closely related CaV1.1 channel. The architectural map identifies precise interaction loci between the different subunits and paves the way for elucidating the mechanistic basis for the regulation of Ca2+ balance in cardiac myocytes under physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

Three dimensional

BrS:

Brugada syndrome

CaM:

Calmodulin

Cryo-EM:

Cryo-electron microscopy

LQT8:

Long QT syndrome 8

NavAb:

Voltage-gated Na+ channel from Arcobacter butzleri

QT:

Time interval between the Q and the T waves on the cardiac electrocardiogram

SQTS:

Short QT syndrome

VWA:

Von Willebrand factor A

References

  • Andrade A, Sandoval A, Oviedo N, De Waard M, Elias D, Felix R (2007) Proteolytic cleavage of the voltage-gated Ca2+ channel alpha2delta subunit: structural and functional features. Eur J Neurosci 25(6):1705–1710. doi:10.1111/j.1460-9568.2007.05454.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, Guerchicoff A, Pfeiffer R, Oliva A, Wollnik B, Gelber P, Bonaros EP Jr, Burashnikov E, Wu Y, Sargent JD, Schickel S, Oberheiden R, Bhatia A, Hsu LF, Haissaguerre M, Schimpf R, Borggrefe M, Wolpert C (2007) Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115(4):442–449. doi:10.1161/CIRCULATIONAHA.106.668392

    Article  PubMed  PubMed Central  Google Scholar 

  • Berrou L, Klein H, Bernatchez G, Parent L (2002) A specific tryptophan in the I-II linker is a key determinant of beta-subunit binding and modulation in CaV2.3 calcium channels. Biophys J 83(3):1429–1442. doi:10.1016/S0006-3495(02)73914-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berrou L, Dodier Y, Raybaud A, Tousignant A, Dafi O, Pelletier JN, Parent L (2005) The C-terminal residues in the alpha-interacting domain (AID) helix anchor CaV beta subunit interaction and modulation of CaV2.3 channels. J Biol Chem 280(1):494–505. doi:10.1074/jbc.M410859200

    Article  CAS  PubMed  Google Scholar 

  • Betzenhauser MJ, Pitt GS, Antzelevitch C (2015) Calcium channel mutations in cardiac arrhythmia syndromes. Curr Mol Pharmacol 8(2):133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A (2005) The L-type calcium channel in the heart: the beat goes on. J Clin Invest 115(12):3306–3317. doi:10.1172/JCI27167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borchard U, Hafner D (2000) Ion channels and arrhythmias. Zeitschrift fur Kardiologie 89(Suppl 3):6–12

    CAS  PubMed  Google Scholar 

  • Borsotto M, Barhanin J, Fosset M, Lazdunski M (1985) The 1,4-dihydropyridine receptor associated with the skeletal muscle voltage-dependent Ca2+ channel. Purification and subunit composition. J Biol Chem 260(26):14255–14263

    CAS  PubMed  Google Scholar 

  • Bourdin B, Marger F, Wall-Lacelle S, Schneider T, Klein H, Sauve R, Parent L (2010) Molecular determinants of the CaVbeta-induced plasma membrane targeting of the CaV1.2 channel. J Biol Chem 285(30):22853–22863. doi:10.1074/jbc.M110.111062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdin B, Shakeri B, Tetreault MP, Sauve R, Lesage S, Parent L (2015) Functional characterization of CaValpha2delta mutations associated with sudden cardiac death. J Biol Chem 290(5):2854–2869. doi:10.1074/jbc.M114.597930

    Article  CAS  PubMed  Google Scholar 

  • Briot J, D’Avanzo N, Sygusch J, Parent L (2016) Three-dimensional architecture of the L-type calcium channel: structural insights into the CaVα2δ1 auxiliary protein. Biochem Mol Biol J 2(3). doi:10.21767/2471-8084.100025

  • Buraei Z, Yang J (2013) Structure and function of the beta subunit of voltage-gated Ca2+ channels. Biochim Biophys Acta 1828(7):1530–1540. doi:10.1016/j.bbamem.2012.08.028

    Article  CAS  PubMed  Google Scholar 

  • Burashnikov E, Pfeiffer R, Barajas-Martinez H, Delpon E, Hu D, Desai M, Borggrefe M, Haissaguerre M, Kanter R, Pollevick GD, Guerchicoff A, Laino R, Marieb M, Nademanee K, Nam GB, Robles R, Schimpf R, Stapleton DD, Viskin S, Winters S, Wolpert C, Zimmern S, Veltmann C, Antzelevitch C (2010) Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Heart Rhythm 7(12):1872–1882. doi:10.1016/j.hrthm.2010.08.026

    Article  PubMed  PubMed Central  Google Scholar 

  • Calderon-Rivera A, Andrade A, Hernandez-Hernandez O, Gonzalez-Ramirez R, Sandoval A, Rivera M, Gomora JC, Felix R (2012) Identification of a disulfide bridge essential for structure and function of the voltage-gated Ca2+ channel alpha2delta-1 auxiliary subunit. Cell Calcium 51(1):22–30. doi:10.1016/j.ceca.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3(8):a003947. doi:10.1101/cshperspect.a003947

    Article  PubMed  PubMed Central  Google Scholar 

  • Catterall WA, Zheng N (2015) Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors. Trends Biochem Sci 40(9):526–534. doi:10.1016/j.tibs.2015.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordeiro JM, Marieb M, Pfeiffer R, Calloe K, Burashnikov E, Antzelevitch C (2009) Accelerated inactivation of the L-type calcium current due to a mutation in CACNB2b underlies Brugada syndrome. J Mol Cell Cardiol 46(5):695–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis BM, Catterall WA (1983) Solubilization of the calcium antagonist receptor from rat brain. J Biol Chem 258(12):7280–7283

    CAS  PubMed  Google Scholar 

  • Curtis BM, Catterall WA (1984) Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 23(10):2113–2118

    Article  CAS  PubMed  Google Scholar 

  • Dafi O, Berrou L, Dodier Y, Raybaud A, Sauve R, Parent L (2004) Negatively charged residues in the N-terminal of the AID helix confer slow voltage dependent inactivation gating to CaV1.2. Biophys J 87(5):3181–3192. doi:10.1529/biophysj.104.045559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies A, Kadurin I, Alvarez-Laviada A, Douglas L, Nieto-Rostro M, Bauer CS, Pratt WS, Dolphin AC (2010) The alpha2delta subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc Natl Acad Sci U S A 107(4):1654–1659. doi:10.1073/pnas.0908735107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deller MC, Kong L, Rupp B (2016) Protein stability: a crystallographer’s perspective. Acta Crystallogr Sect F Struct Biol Commun 72(Pt 2):72–95. doi:10.1107/S2053230X15024619

    Article  CAS  Google Scholar 

  • Depil K, Beyl S, Stary-Weinzinger A, Hohaus A, Timin E, Hering S (2011) Timothy mutation disrupts the link between activation and inactivation in CaV1.2 protein. J Biol Chem 286(36):31557–31564. doi:10.1074/jbc.M111.255273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doerr A (2015) Cryo-Em goes high-resolution. Nat Methods 12(7):598–599

    Article  CAS  PubMed  Google Scholar 

  • Dragicevic E, Poetschke C, Duda J, Schlaudraff F, Lammel S, Schiemann J, Fauler M, Hetzel A, Watanabe M, Lujan R, Malenka RC, Striessnig J, Liss B (2014) Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons. Brain 137(Pt 8):2287–2302. doi:10.1093/brain/awu131

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuller-Bicer GA, Varadi G, Koch SE, Ishii M, Bodi I, Kadeer N, Muth JN, Mikala G, Petrashevskaya NN, Jordan MA, Zhang SP, Qin N, Flores CM, Isaacsohn I, Varadi M, Mori Y, Jones WK, Schwartz A (2009) Targeted disruption of the voltage-dependent calcium channel alpha2/delta-1-subunit. Am J Phys Heart Circ Phys 297(1):H117–H124. doi:10.1152/ajpheart.00122.2009

    CAS  Google Scholar 

  • Gaborit N, Steenman M, Lamirault G, Le Meur N, Le Bouter S, Lande G, Leger J, Charpentier F, Christ T, Dobrev D, Escande D, Nattel S, Demolombe S (2005) Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation 112(4):471–481. doi:10.1161/CIRCULATIONAHA.104.506857

    Article  PubMed  Google Scholar 

  • Gillis J, Burashnikov E, Antzelevitch C, Blaser S, Gross G, Turner L, Babul-Hirji R, Chitayat D (2012) Long QT, syndactyly, joint contractures, stroke and novel CACNA1C mutation: expanding the spectrum of Timothy syndrome. Am J Med Genet A 158A(1):182–187. doi:10.1002/ajmg.a.34355

    Article  PubMed  Google Scholar 

  • Halling DB, Georgiou DK, Black DJ, Yang GJ, Fallon JL, Quiocho FA, Pedersen SE, Hamilton SL (2009) Determinants in CaV1 channels that regulate the Ca2+ sensitivity of bound calmodulin. J Biol Chem 284(30):20041–20051. doi:10.1074/jbc.M109.013326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hell JW, Westenbroek RE, Warner C, Ahlijanian MK, Prystay W, Gilbert MM, Snutch TP, Catterall WA (1993) Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits. J Cell Biol 123(4):949–962

    Article  CAS  PubMed  Google Scholar 

  • Jay SD, Sharp AH, Kahl SD, Vedvick TS, Harpold MM, Campbell KP (1991) Structural characterization of the dihydropyridine-sensitive calcium-channel Alpha-2-subunit and the associated delta-peptides. J Biol Chem 266(5):3287–3293

    CAS  PubMed  Google Scholar 

  • Kim EY, Rumpf CH, Fujiwara Y, Cooley ES, Van Petegem F, Minor DL Jr (2008) Structures of CaV2 Ca2+/CaM-IQ domain complexes reveal binding modes that underlie calcium-dependent inactivation and facilitation. Structure 16(10):1455–1467. doi:10.1016/j.str.2008.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause U, Gravenhorst V, Kriebel T, Ruschewski W, Paul T (2011) A rare association of long QT syndrome and syndactyly: Timothy syndrome (LQT 8). Clin Res Cardiol 100(12):1123–1127. doi:10.1007/s00392-011-0358-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kryshtal DO, Hwang HS, Johnson CN, Chazin WJ, George AL, Knollmann BC (2015) Divergent regulation of cardiomyocyte Cav1.2 currents by calmodulin mutants associated with human sudden death syndromes. Biophys J 108(2):580A

    Article  Google Scholar 

  • Leung AT, Imagawa T, Campbell KP (1987) Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. J Biol Chem 262(17):7943–7946

    CAS  PubMed  Google Scholar 

  • Limpitikul WB, Dick IE, Joshi-Mukherjee R, Overgaard MT, George AL Jr, Yue DT (2014) Calmodulin mutations associated with long QT syndrome prevent inactivation of cardiac L-type Ca2+ currents and promote proarrhythmic behavior in ventricular myocytes. J Mol Cell Cardiol 74:115–124. doi:10.1016/j.yjmcc.2014.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long SB, Campbell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309(5736):897–903. doi:10.1126/science.1116269

    Article  CAS  PubMed  Google Scholar 

  • Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100(9):5543–5548. doi:10.1073/pnas.0935295100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minor DL Jr, Findeisen F (2010) Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels 4(6):459–474. doi:10.4161/chan.4.6.12867

    Article  PubMed  PubMed Central  Google Scholar 

  • Napolitano C, Antzelevitch C (2011) Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac voltage-dependent L-type calcium channel. Circ Res 108(5):607–618. doi:10.1161/CIRCRESAHA.110.224279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parent L, Gopalakrishnan M (1995) Glutamate substitution in repeat IV alters divalent and monovalent cation permeation in the heart Ca2+ channel. Biophys J 69(5):1801–1813. doi:10.1016/S0006-3495(95)80050-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102(1):89–97

    Article  CAS  PubMed  Google Scholar 

  • Raybaud A, Dodier Y, Bissonnette P, Simoes M, Bichet DG, Sauve R, Parent L (2006) The role of the GX9GX3G motif in the gating of high voltage-activated Ca2+ channels. J Biol Chem 281(51):39424–39436. doi:10.1074/jbc.M607405200

    Article  CAS  PubMed  Google Scholar 

  • Savalli N, Pantazis A, Sigg D, Weiss JN, Neely A, Olcese R (2016) The alpha2delta-1 subunit remodels CaV1.2 voltage sensors and allows Ca2+ influx at physiological membrane potentials. J Gen Physiol 148(2):147–159. doi:10.1085/jgp.201611586

    Article  PubMed  PubMed Central  Google Scholar 

  • Scoote M, Williams AJ (2004) Myocardial calcium signalling and arrhythmia pathogenesis. Biochem Biophys Res Commun 322(4):1286–1309. doi:10.1016/j.bbrc.2004.08.034

    Article  CAS  PubMed  Google Scholar 

  • Shakeri B, Bourdin B, Demers-Giroux PO, Sauve R, Parent L (2012) A quartet of leucine residues in the guanylate kinase domain of CaVbeta determines the plasma membrane density of the CaV2.3 channel. J Biol Chem 287(39):32835–32847. doi:10.1074/jbc.M112.387233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp AH, Campbell KP (1989) Characterization of the 1,4-dihydropyridine receptor using subunit-specific polyclonal antibodies – evidence for a 32,000-Da-subunit. J Biol Chem 264(5):2816–2825

    CAS  PubMed  Google Scholar 

  • Sharp AH, Imagawa T, Leung AT, Campbell KP (1987) Identification and characterization of the dihydropyridine-binding subunit of the skeletal muscle dihydropyridine receptor. J Biol Chem 262(25):12309–12315

    CAS  PubMed  Google Scholar 

  • Simms BA, Zamponi GW (2012) The Brugada syndrome mutation A39V does not affect surface expression of neuronal rat Cav1.2 channels. Mol Brain 5:9. doi:10.1186/1756-6606-5-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivagangabalan G, Nazzari H, Bignolais O, Maguy A, Naud P, Farid T, Masse S, Gaborit N, Varro A, Nair K, Backx P, Vigmond E, Nattel S, Demolombe S, Nanthakumar K (2014) Regional ion channel gene expression heterogeneity and ventricular fibrillation dynamics in human hearts. PLoS One 9(1):e82179. doi:10.1371/journal.pone.0082179

    Article  PubMed  PubMed Central  Google Scholar 

  • Snutch TP, Reiner PB (1992) Ca2+ channels: diversity of form and function. Curr Opin Neurobiol 2(3):247–253

    Article  CAS  PubMed  Google Scholar 

  • Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119(1):19–31. doi:10.1016/j.cell.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  • Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, Sanguinetti MC, Keating MT (2005) Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A 102(23):8089–8096. doi:10.1073/pnas.0502506102. discussion 8086–8088.

    Google Scholar 

  • Takahashi M, Seagar MJ, Jones JF, Reber BFX, Catterall WA (1987) Subunit Structure of Dihydropyridine-Sensitive Calcium Channels from Skeletal-Muscle. Proc Natl Acad Sci U S A 84(15):5478–5482. doi:10.1073/Pnas.84.15.5478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328(6128):313–318. doi:10.1038/328313a0

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Gamal El-Din TM, Payandeh J, Martinez GQ, Heard TM, Scheuer T, Zheng N, Catterall WA (2014) Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505(7481):56–61. doi:10.1038/nature12775

    Article  PubMed  Google Scholar 

  • Tang L, El-Din TM, Swanson TM, Pryde DC, Scheuer T, Zheng N, Catterall WA (2016) Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs. Nature. doi:10.1038/nature19102

    Google Scholar 

  • Templin C, Ghadri JR, Rougier JS, Baumer A, Kaplan V, Albesa M, Sticht H, Rauch A, Puleo C, Hu D, Barajas-Martinez H, Antzelevitch C, Luscher TF, Abriel H, Duru F (2011) Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). Eur Heart J 32(9):1077–1088. doi:10.1093/eurheartj/ehr076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetreault MP, Bourdin B, Briot J, Segura E, Lesage S, Fiset C, Parent L (2016) Identification of glycosylation sites essential for surface expression of the CaValpha2delta1 subunit and modulation of the cardiac CaV1.2 channel activity. J Biol Chem 291(9):4826–4843. doi:10.1074/jbc.M115.692178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Petegem F, Chatelain FC, Minor DL (2005) Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain-Ca2+/calmodulin complex. Nat Struct Mol Biol 12(12):1108–1115. doi:10.1038/nsmb1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Petegem F, Duderstadt KE, Clark KA, Wang M, Minor DL Jr (2008) Alanine-scanning mutagenesis defines a conserved energetic hotspot in the CaValpha1 AID-CaVbeta interaction site that is critical for channel modulation. Structure 16(2):280–294. doi:10.1016/j.str.2007.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N (2015) Structure of the voltage-gated calcium channel Cav1.1 complex. Science 350(6267):aad2395. doi:10.1126/science.aad2395

    Article  PubMed  Google Scholar 

  • Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, Zhou Q, Yan N (2016) Structure of the voltage-gated calcium channel Cav1.1 at 3.6 a resolution. Nature. doi:10.1038/nature19321

    Google Scholar 

  • Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, Dolmetsch RE (2011) Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471(7337):230–234. doi:10.1038/nature09855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada to LP

Conflict of Interest

The authors declare that they have no conflict of interest

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors

Disclosures

NONE

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Parent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Briot, J., Tétreault, MP., Bourdin, B., Parent, L. (2017). Inherited Ventricular Arrhythmias: The Role of the Multi-Subunit Structure of the L-Type Calcium Channel Complex. In: Atassi, M. (eds) Protein Reviews. Advances in Experimental Medicine and Biology(), vol 966. Springer, Singapore. https://doi.org/10.1007/5584_2016_186

Download citation

Publish with us

Policies and ethics