Skip to main content

High-Temperature Gas Sensors

  • Chapter
  • First Online:
Gas Sensing Fundamentals

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 15))

Abstract

High-temperature processes in the field of, e.g., energy conversion or chemical technologies require sophisticated process monitoring and control to ensure high-efficiency, low pollutant emissions, and safe operation. These objectives can only be achieved by in-situ control of the processes. The increasing combustion of biofuels, organic waste, wood, etc., tightens the demand for process control even more. Properties to be monitored include temperature, gas composition, pressure, torque, mechanical integrity, and state of functional components. In this chapter, an overview about current gas sensor principles for operation temperatures above 500°C is given. Thereby, the related range of measurement, the selectivity, the sensitivity, the response time, and the long-term stability are presented along with application examples. Since the selection of sensor materials plays a crucial role at high temperatures, material aspects are an essential part of the chapter. The discussion of solid-state sensor principles includes potentiometric, amperometric, resistive, and resonant sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohl D (2001) Function and applications of gas sensors. J Phys D Appl Phys 34:R125–R149

    CAS  Google Scholar 

  2. Ivers-Tiffee E, Hardtl KH, Menesklou W, Riegel J (2001) Principles of solid state oxygen sensors for lean combustion gas control. Electrochim Acta 47(5):807–814

    CAS  Google Scholar 

  3. Moseley PT (1997) Solid state gas sensors. Meas Sci Technol 8(3):223–237

    CAS  Google Scholar 

  4. Garzon F, Mukundan R, Brosha E (2000) Solid-state mixed potential gas sensors: theory, experiments and challenges. Solid State Ion 136:633–638

    Google Scholar 

  5. Miura N, Lu G, Yamazoe N (2000) Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases. Solid State Ion 136:533–542

    Google Scholar 

  6. Moos R, Sahner K, Fleischer M, Guth U, Barsan N, Weimar U (2009) Solid state gas sensor research in Germany – a status report. Sensors 9:4323–4365

    CAS  Google Scholar 

  7. Zosel J, Tuchtenhagen D, Ahlborn K, Guth U (2008) Mixed potential gas sensor with short response time. Sens Actuators B Chem 130(1):326–329

    CAS  Google Scholar 

  8. Göpel W, Hesse J, Zemel JN (eds) (1992) Optical sensors. VCH, Weinheim

    Google Scholar 

  9. Hodgkinson J, Tatam RP (2013) Optical gas sensing: a review. Meas Sci Technol 24(1):012,004

    Google Scholar 

  10. Somorjai GA (1972) Principles of surface chemistry. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  11. Ostrovskii VE, Agafonov YA, Gostev BV, Kadyshevich EA, Lapidus AL (2010) Chemisorption of gases and reaction of propane dehydration at chromic oxide. Solid Fuel Chem 44(4):275–286

    Google Scholar 

  12. Geiger GH, Poirier DR (1973) Transport phenomena in metallurgy. Addison-Wesley

    Google Scholar 

  13. Sakuma T (1988) Phase transformation and microstructure of partially-stabilized zirconia. Trans Jpn Inst Met 29(11):879–893

    CAS  Google Scholar 

  14. Ruh R, Mazdiyasni K, Valentine P, Bielstein H (1984) Phase Relations in the System ZrO2–Y2O3 at Low Y2O3 Contents. J Am Ceram Soc 67(9):C–190

    Google Scholar 

  15. Kröger FA (1964) The chemistry of imperfect crystals. North Holland, Amsterdam

    Google Scholar 

  16. Park J, Blumenthal R (1989) Electronic transport in 8 mole percent Y2O3-ZrO2. J Electrochem Soc 136(10):2867–2876

    CAS  Google Scholar 

  17. Goff J, Hayes W, Hull S, Hutchings M, Clausen K (1999) Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys Rev B 59(22):14,202

    Google Scholar 

  18. Ramamoorthy R, Dutta P, Akbar S (2003) Oxygen sensors: materials, methods, designs and applications. J Mater Sci 38(21):4271–4282

    CAS  Google Scholar 

  19. Wiemhöfer H, Göpel W (1991) Interface analysis for solid state electrochemical devices and chemical sensors. Fresenius J Anal Chem 341:106–111

    Google Scholar 

  20. Darken LS, Gurry RW (1953) Physical chemistry of metals. McGraw-Hill, New York

    Google Scholar 

  21. Fouletier J, Mantel E, Kleitz M (1982) Performance characteristics of conventional oxygen gauges. Solid State Ion 6:1–13

    CAS  Google Scholar 

  22. Ghetta V, Fouletier J, Henault M, le Moulec A (2002) Control and monitoring of oxygen content in molten metals. Application to lead and lead-bismuth melts. J Phys IV 12:123–140

    CAS  Google Scholar 

  23. Weppner W (1977) Electronic transport properties and electrically induced p-n junction in ZrO2 + 10 mol% Y2O3. J Solid State Chem 20(3):305–314

    CAS  Google Scholar 

  24. Friedman L, Oberg K, Boorstein W, Rapp R (1973) Electronic conductivities of commercial ZrO2+ 3 to 4 Wt Pct CaO electrolytes. Metallur Mater Trans B 4(1):69–74

    CAS  Google Scholar 

  25. Patterson JW, Bogren EC, Rapp RA (1967) Mixed conduction in Zr0.85Ca0.15O1.85 and Th0.85Y0.15O1.925. J Electrochem Soc 114:752

    CAS  Google Scholar 

  26. Fouletier J, Fabry P, Kleitz M (1976) Electrochemical semipermeability and the electrode microsystem in solid oxide electrolyte cells. J Electrochem Soc 123(2):204–213

    CAS  Google Scholar 

  27. Maskell W, Steele B (1986) Solid state potentiometric oxygen gas sensors. J Appl Electrochem 16(4):475–489

    CAS  Google Scholar 

  28. Fouletier J, Siebert E, Caneiro A (1984) Accurate monitoring of low oxygen activity in gases with conventional oxygen gauges and pumps. In Science and Technology of Zirconia II. Adv Ceram 12:618–626

    CAS  Google Scholar 

  29. Fouletier J, Seinera H, Kleitz M (1974) Measurement and regulation of oxygen content in selected gases using solid electrolyte cells. I. discontinuous use of gauges. J Appl Electrochem 4(4):305–315

    CAS  Google Scholar 

  30. Fleming W (1977) Physical principles governing nonideal behavior of the zirconia oxygen sensor. J Electrochem Soc 124(1):21–28

    CAS  Google Scholar 

  31. Lide DR (ed) (2003) CRC handbook of chemistry and physics, 84th edn. CRC

    Google Scholar 

  32. Schulz M, Brillo J, Stenzel C, Fritze H (2012) Oxygen partial pressure control for microgravity experiments. Solid State Ion 225:332–336

    CAS  Google Scholar 

  33. Egry I (1991) Surface tension measurements of liquid metals by the oscillating drop technique. J Mater Sci 26:2997–3003

    CAS  Google Scholar 

  34. Docquier N, Candel S (2002) Combustion control and sensors: a review. Progr Energy Combust Sci 28(2):107–150

    CAS  Google Scholar 

  35. Riegel J, Neumann H, Wiedenmann H (2002) Exhaust gas sensors for automotive emission control. Solid State Ion 152:783–800

    Google Scholar 

  36. Dietz H (1982) Gas-diffusion-controlled solid-electrolyte oxygen sensors. Solid State Ion 6(2):175–183

    CAS  Google Scholar 

  37. Saji K, Kondo H, Takahashi H, Takeuchi T, Igarashi I (1988) Influence of H2O, CO2 and various combustible gases on the characteristics of a limiting current-type oxygen sensor. J Appl Electrochem 18(5):757–762

    CAS  Google Scholar 

  38. Göpel W, Reinhardt G, Rösch M (2000) Trends in the development of solid state amperometric and potentiometric high temperature sensors. Solid State Ion 136–137:519–531

    Google Scholar 

  39. Baunach T, Schänzlin K, Diehl L (2006) Sauberes Abgas durch Keramiksensoren. Physik J 5:33–38

    Google Scholar 

  40. Alkemade U, Schumann B (2006) Engines and exhaust after treatment systems for future automotive applications. Solid State Ion 177(26):2291–2296

    CAS  Google Scholar 

  41. Twigg M (2003) Automotive exhaust emissions control. Platinum Metals Rev 47(4):157–162

    CAS  Google Scholar 

  42. Skelton DC, Tobin RG, Lambert DK, DiMaggio CL, Fisher GB (2003) A surface-science-based model for the selectivity of platinum–gold alloy electrodes in zirconia-based NOx sensors. Sens Actuators B Chem 96(1):46–52

    CAS  Google Scholar 

  43. Menil F, Coillard V, Lucat C (2000) Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines. Sens Actuators B Chem 67(1):1–23

    CAS  Google Scholar 

  44. Somov S, Guth U (1998) A parallel analysis of oxygen and combustibles in solid electrolyte amperometric cells. Sens Actuators B Chem 47(1):131–138

    CAS  Google Scholar 

  45. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy. Wiley

    Google Scholar 

  46. Bhowmik S, Constant KP, Parker JC, Ali M (1995) Electrical characterization of nanocrystalline Titania 1: impedance spectroscopy studies between 300 K and 473 K. Mater Sci Eng A 204:258–266

    Google Scholar 

  47. Mather GC, Marques FMB, Frade JR (1999) Detection mechanism of TiO2-based ceramic H2 sensors. J Eur Ceram Soc 19:887–891

    CAS  Google Scholar 

  48. Fleischer M (2008) Advances in application potential of solid state gas sensors: high-temperature semi conducting oxides and ambient temperature Gasfet devices. Meas Sci Technol 19:042001

    Google Scholar 

  49. Fleischer M, Wagner V, Hacker B, Meixner H (1995) Comparison of a.c. and d.c. measurement techniques using semiconducting Ga2O3 sensors. Sens Actuators B Chem 26–27:85–88

    Google Scholar 

  50. Kiss G, Pinter Z, Perczel IV, Sassi Z, Reti F (2001) Study of oxide semiconductor sensor materials by selected methods. Thin Solid Films 391(2):216–223

    CAS  Google Scholar 

  51. Schwebel T, Fleischer M, Meixner H, Kohl CD (1998) CO-sensor for domestic use based on high temperature stable Ga2O3 thin films. Sens Actuators B Chem 49:46–51

    CAS  Google Scholar 

  52. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electrocer 7(3):143–167

    CAS  Google Scholar 

  53. Seiyama T, Kato A, Fujishi K, Nagatani M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34:1502–1503

    CAS  Google Scholar 

  54. Taguchi N (1972) Gas detecting device. US Patent 3,695,848

    Google Scholar 

  55. Weimar U, Göpel W (1995) Measurements on tin oxide sensors to improve selectivities and sensitivities. Sens Actuators B Chem 26(1):1318

    Google Scholar 

  56. Gerblinger J, Lohwasser W, Lampe U, Meixner H (1995) High temperature oxygen sensor based on sputtered cerium oxide. Sens Actuators B Chem 26–27:93–96

    Google Scholar 

  57. Knauth P, Tuller HL (1999) Nonstoichiometry and relaxation kinetics of nanocrystalline mixed praseodymium-Cerium oxide Pr0.7Ce0.3O2-x . J Eur Ceramic Soc 19(6):831–836

    CAS  Google Scholar 

  58. Menesklou W, Schreiner HJ, Härdtl KH, Ivers-Tiffee E (1999) High temperature oxygen sensors based on doped SrTiO3. Sens Actuators B Chem 59(2–3):184–189

    CAS  Google Scholar 

  59. Moos R, Härdtl KH (1997) Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000 and 1400°C. J Am Ceram Soc 80(10):2549–2562

    CAS  Google Scholar 

  60. Rothschild A, Menesklou W, Tuller HL, Ivers-Tiffee E (2006) Electronic structure, defect chemistry, and transport properties of SrTi1-x Fe x O3. Solid Solutions Chem Mater 18:3651–3659

    Google Scholar 

  61. Skinner SJ, Kilner JA (2003) Oxygen ion conductors. Mater Today 6(3):30–37

    CAS  Google Scholar 

  62. Zhou HD, Goodenough JB (2004) Polaron morphologies in SrTi1-x Fe x O3-δ . J Solid State Chem 177:1952–1957

    CAS  Google Scholar 

  63. Hwang JH, McLachlan DS, Mason TO (1999) Brick layer model analysis of nanoscale-to-microscale cerium dioxide. J Electroceram 3:7–16

    CAS  Google Scholar 

  64. Tuller HL (2000) Ionic conduction in nanocrystalline materials. Solid State Ion 131(1):143–157

    CAS  Google Scholar 

  65. Butt DP, Park Y, Taylor TN (1999) Thermal vaporization and deposition of gallium oxide in hydrogen. J Nucl Mater 264:71–77

    CAS  Google Scholar 

  66. Althainz P, Goschnick J, Ehrmann S, Ache HJ (1996) Multisensor microsystem for contaminants in air. Sens Actuators B 33:72–76

    CAS  Google Scholar 

  67. Frank K, Kohler H, Guth U (2009) Influence of the measurement conditions on the sensitivity of SnO2 gas sensors operated thermo-cyclically. Sens Actuators B 141:361–369

    CAS  Google Scholar 

  68. Rothschild A, Tuller HL (2006) Gas sensors: new materials and processing approaches. J Electroceram 17(2–4):1005–1012

    CAS  Google Scholar 

  69. Fleischer M, Kornely S, Weh T, Frank J, Meixner H (2000) Selective gas detection with high-temperature operated metal oxides using catalytic filters. Sens Actuators B 69:205–210

    CAS  Google Scholar 

  70. Firebaugh SL, Jensen KF, Schmidt MA (1998) Investigation of high-temperature degradation of platinum thin films with an in situ resistance measurement apparatus. J Microelectromech Syst 7(1):128–135

    CAS  Google Scholar 

  71. Meyer R, Waser R (2004) Resistive donor-doped SrTiO3 sensors: I, basic model for a fast sensor response. Sens Actuators B Chem 101(3):335–345

    CAS  Google Scholar 

  72. Baumard JF, Tani E (1977) Electrical conductivity and charge compensation in Nb doped TiO2 rutile. J Chem Phys 67:857–860

    CAS  Google Scholar 

  73. Chiang YM, Birnie DP, Kingery WD (1997) Physical ceramics: principles for ceramics science and engineering. Wiley

    Google Scholar 

  74. Choi GM, Tuller HL (1988) Defect structure and electrical properties of single-crystal Ba0.03 Sr0.97TiO3. J Am Ceram Soc 71(4):201–205

    CAS  Google Scholar 

  75. Yoo H, Song H, Lee D (2002) BaTiO3-δ defect structure, electrical conductivity, chemical diffusivity, thermoelectric power, and oxygen nonstoichiometry. J Electroceram 8:5–36

    CAS  Google Scholar 

  76. Moos R, Menesklou W, Schreiner H, Härdtl K (2000) Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control. Sens Actuators B Chem 67(1–2):178–183

    CAS  Google Scholar 

  77. Brixner LH (1968) Preparation and properties of the SrTi1-x Fe x O3-x/2/O x/2 system. Mater Res Bull 3(4):299–308

    CAS  Google Scholar 

  78. Norby T (2001) Fast oxygen ion conductors – from doped to ordered systems. J Mater Chem 11:11–18

    Google Scholar 

  79. Steinsvik S, Bugge R, Gjønnes J, Taftø J, Norby T (1997) The defect structure of SrTi1-x Fe x O3-y (x = 0–0.8) investigated by electrical conductivity measurements and electron energy loss spectroscopy (EELS). J Phys Chem Solids 58:969–976

    CAS  Google Scholar 

  80. Haines J, Cambon O, Keen D, Tucker M, Dove M (2002) Structural disorder and loss of piezoelectric properties in α-quartz at high temperature. Appl Phys Lett 81:2968

    CAS  Google Scholar 

  81. Jundt DH, Fejer MM, Norwood RG (1992) Composition dependence of lithium diffusivity in lithium niobate at high temperature. J Appl Phys 72(8):3468–3473

    CAS  Google Scholar 

  82. Barns R, Carruthers J (1970) Lithium tantalate single crystal stoichiometry. J Appl Crystallogr 3(5):395–399

    CAS  Google Scholar 

  83. Birnie DP III (1993) Analysis of diffusion in lithium niobate. J Mater Sci 28:302–315

    CAS  Google Scholar 

  84. Damjanovic D (1998) Materials for high temperature piezoelectric transducers. Curr Opin Solid State Mater Sci 3(5):469–473

    CAS  Google Scholar 

  85. Fachberger R, Bruckner G, Knoll G, Hauser R, Biniasch J, Reindl L (2004) Applicability of LiNbO3, langasite and GaPO4 in high temperature SAW sensors operating at radio frequencies. IEEE Trans Ultrason Ferroelectr Freq Control 51(11):1427–1431

    Google Scholar 

  86. Reindl L, Scholl G, Ostertag T, Scherr H, Wolff U, Schmidt F (1998) Theory and application of passive SAW radio transponder as sensors. IEEE Trans Ultrason Ferroelectr Freq Control 45:1281–1292

    CAS  Google Scholar 

  87. Bruckner G, Hauser R, Stelzer A, Maurer L, Reindl L, Teichmann R, Biniasch J (2003) High temperature stable SAW based tagging system for identifying a pressure sensor. In: Proceedings of the 2003 I.E. international frequency control symposium and PDA exhibition jointly with the 17th European frequency and time forum, 2003. pp a942–a947

    Google Scholar 

  88. Bordui PF, Norwood RG, Jundt DH, Fejer MM (1992) Preparation and characterization of off-congruent lithium niobate crystals. J Appl Phys 71:875

    CAS  Google Scholar 

  89. Jundt DH, Fejer MM, Byer RL (1990) Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration. IEEE J Quant Electr 26:135–138

    CAS  Google Scholar 

  90. Ohlendorf G, Richter D, Sauerwald J, Fritze H (2008) High-temperature electrical conductivity and electro-mechanical properties of stoichiometric lithium niobate. Diffusion Fundament 8:6–1

    Google Scholar 

  91. Epelbaum BM, Nagata S, Bickermann M, Heimann P, Winnacker A (2007) Development of natural habit of large free-nucleated ALN single crystals. Physica Status Solidi B Basic Solid State Phys 244(6):1780–1783

    CAS  Google Scholar 

  92. Patel ND, Nicholson PS (1990) High-frequency, high-temperature ultrasonic transducers. NDT Int 23(5):262–266

    CAS  Google Scholar 

  93. Jacobs K, Hofmann P, Klimm D, Reichow J, Schneider M (2000) Structural phase transformations in crystalline gallium orthophosphate. J Solid State Chem 149(1):180–188

    CAS  Google Scholar 

  94. Krempl P (1997) Quartz homeotypic gallium orthophosphate: a new high-tech piezoelectric crystal. Ferroelectrics 202(1):65–69

    CAS  Google Scholar 

  95. Krispel F, Reiter C, Neubig J, Lenzenhuber F, Krempl PW, Wallnöfer W, Worsch PM (2003) Properties and applications of singly rotated GaPO4 resonators. IEEE Int Freq Contr Symp 17:668–673

    Google Scholar 

  96. Chai B, Lefaucheur JL, Ji YY, Qiu H (1998) Growth and evaluation of large size LGS (La3Ga5SiO14), LGN (La3Ga5,Nb0,5O14) and LGT (La3Ga5,5Ta0,5O14) single crystals. In: Proceedings of the 1998 IEEE international frequency control symposium, Crystal Photontics Inc., Sanford, pp 748–760

    Google Scholar 

  97. Shimamura K, Takeda H, Kohno T, Fukuda T (1996) Growth and characterization of lanthanum gallium silicate La3Ga5SiO14 single crystals for piezoelectric applications. J Crystal Growth 163(4):388–392

    CAS  Google Scholar 

  98. Zhang S, Fei Y, Chai BHT, Frantz E, Snyder DW, Jiang X, Shrout TR (2008) Characterization of piezoelectric single crystal YCa4O(BO3)3 for high temperature applications. Appl Phys Lett 92(20):202905-1–202905-3

    Google Scholar 

  99. Perloff A (1956) Temperature inversions of anhydrous gallium orthophosphate. J Am Ceram Soc 39(3):83–88

    CAS  Google Scholar 

  100. Hirano S, Kim P, Orihara H, Umeda H, Ishibashi Y (1990) Dielectric properties of hydrothermally grown gallium orthophosphate single crystals. J Mater Sci 25(6):2800–2804

    CAS  Google Scholar 

  101. Krempl P, Voborsky G, Posch U, Wallnöfer W (1994) Hydrothermal process for growing large crystals or crystal layers. US Patent 5,375,556

    Google Scholar 

  102. Elam JW, Pellin MJ (2005) GaPO4 sensors for gravimetric monitoring during atomic layer deposition at high temperatures. Anal Chem 77(11):3531–3535

    CAS  Google Scholar 

  103. Thanner H, Krempl PW, Wallnöfer W, Worsch PM (2002) GaPO4 high temperature crystal microbalance with zero temperature coefficient. Vacuum 67(3–4):687–691

    CAS  Google Scholar 

  104. Haines J, Cambon O, Prudhomme N, Fraysse G, Keen D, Chapon L, Tucker M (2006) High-temperature, structural disorder, phase transitions, and piezoelectric properties of GaPO4. Phys Rev B 73(1):14,103

    Google Scholar 

  105. Barz RU, Grassl M, Gille P (2001) Study of anisotropic effects in hydrothermal growth of gallium orthophosphate single crystals. Ann Chim Sci Mat 26:95–98

    CAS  Google Scholar 

  106. Cambon O, Yot P, Balitsky D, Goiffon A, Philippot E, Capelle B, Detaint J (2001) Crystal growth of GaPO4, a very promising material for manufacturing BAW devices. Ann Chim Sci Mater 26:79–84

    CAS  Google Scholar 

  107. Jacobs K, Hofmann P, Klimm D (2002) OH impurities in GaPO4 crystals: correlation between infrared absorption and mass loss during thermal treatment. J Cryst Growth 237–239:837–842

    Google Scholar 

  108. Jacobs K, Hofmann P, Reichow J (2001) Physico-chemical aspects of the hydrothermal growth of GaPO4. Ann Chim Sci Mater 26:85–90

    CAS  Google Scholar 

  109. Mill B, Pisarevsky Y (2000) Langasite-type materials: from discovery to present state. In: Proceedings of the 2000 IEEE/EIA international frequency control symposium and exhibition, 2000. Kansas City, MO, USA, pp 133–144

    Google Scholar 

  110. Fritze, Holger: High-temperature piezoelectric crystals and devices. J Electroceram 26(1–4):122–161

    Google Scholar 

  111. Schulz M, Fritze H (2008) Electromechanical properties of langasite resonators at elevated temperatures. Renew Energy 33(2):336–341

    CAS  Google Scholar 

  112. Fritze H, Tuller H (2001) Langasite for high-temperature bulk acoustic wave applications. Appl Phys Lett 78(7):976–977

    CAS  Google Scholar 

  113. Yu F, Zhao X, Pan L, Li F, Yuan D, Zhang S (2010) Investigation of zero temperature compensated cuts in langasite-type piezocrystals for high temperature applications. J Phys D Appl Phys 43:165,402

    Google Scholar 

  114. Zhang S, Frantz E, Xia R, Everson W, Randi J, Snyder DW, Shrout TR (2008) Gadolinium calcium oxyborate piezoelectric single crystals for ultrahigh temperature (>1000°C) applications. J Appl Phys 104:084–103

    Google Scholar 

  115. Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik A 155(2):206–222

    CAS  Google Scholar 

  116. Benes E (1984) Improved quartz microbalance technique. J Appl Phys 56:608–626

    CAS  Google Scholar 

  117. Martin B, Hager H (1989) Velocity profile on quartz crystals oscillating in liquids. J Appl Phys 65:2630

    Google Scholar 

  118. Berlincourt DA, Curran D, Jaffe H (1964) Physical acoustics, principles and methods. In: Piezoelectric and piezomagnetic materials and their function in transducers, vol 1–Part A, Chap. 3. Academic, pp 169–270

    Google Scholar 

  119. Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, Oxford

    Google Scholar 

  120. Tiersten HF (1969) Linear piezoelectric plate vibration. Plenum

    Google Scholar 

  121. Fritze H (2011) High-temperature bulk acoustic wave sensors. Meas Sci Technol 22:012,002

    Google Scholar 

  122. Wohltjen H (1984) Mechanism of operation and design considerations for surface acoustic-wave device vapor sensors. Sens Actuators 5(4):307–325

    CAS  Google Scholar 

  123. Richter D, Sakharov S, Forsén E, Mayer E, Reindl L, Fritze H (2011) Thin film electrodes for high temperature surface acoustic wave devices. Procedia Eng 25:168–171

    CAS  Google Scholar 

  124. Hornsteiner J, Born E, Fischerauer G, Riha E (1998) Surface acoustic wave sensors for high-temperature applications. In: Proceedings of the 1998 I.E. international frequency control symposium, 1998. Pasadena, CA, USA, pp 615–620

    Google Scholar 

  125. da Cunha M, Moonlight T, Lad R, Frankel D, Bernhard G (2008) High temperature sensing technology for applications up to 1000°C. In: Proceedings of the IEEE sensors 2008. Beijing, China, pp 752–755

    Google Scholar 

  126. Narine SS, Slavin AJ (1998) Use of the quartz crystal microbalance to measure the mass of submonolayer deposits: Measuring the stoichiometry of surface oxides. J Vac Sci Technol A16:1857–1862

    Google Scholar 

  127. Richter D, Schulz M, Sakharov S, Davis ZJ, Fritze H (2013) Surface acoustic wave devices: materials stability in harsh environments. In: MRS proceedings, Boston, Massachusetts, vol 1519

    Google Scholar 

  128. Thiele J (2006) High temperature LGS SAW gas sensor. Sens Actuators B Chem 113(2):816–822

    CAS  Google Scholar 

  129. Zheng P, Chin TL, Greve D, Oppenheim I, Malone V, Cao L (2011) High-temperature langasite SAW oxygen sensor. IEEE Trans Ultrason Ferroelectr Freq Control 58(8):1538–1540

    Google Scholar 

  130. Moos R (2005) A brief overview on automotive exhaust gas sensors based on electroceramics. Int J Appl Ceram Technol 2(5):401–413

    CAS  Google Scholar 

  131. Fleischer M, Pohle R, Wiesner K, Meixner H (2005) Soot sensor for exhaust gases. In: Eurosensors conference XIX, 2005, vol 1. Barcelona

    Google Scholar 

  132. Tuller HL, Nowick AS (1979) Defect structure and electrical properties of nonstoichiometric CeO2 single crystals. J Electrochem Soc 126:209–217

    CAS  Google Scholar 

  133. Richter D, Fritze H (2009) Selectivity improvement of high-temperature resonant gas sensors using micromachined membrane arrays. In: Proceedings sensor and test conference Nuremberg, Germany

    Google Scholar 

  134. Cachau-Herreillat D, Bennazha J, Goiffon A, Ibanez A, Philippot E (1992) X-ray, DTA and crystal growth investigation on AlPO4–GaPO4 and AlPO4–AlAsO4 systems. Eur J Solid State Inorg Chem 29:1295–1307

    CAS  Google Scholar 

  135. Muraoka Y, Kihara K (1997) The temperature dependence of the crystal structure of berlinite, a quartz-type form of AlPO4. Phys Chem Miner 24(4):243–253

    CAS  Google Scholar 

  136. Strassburg M, Senawiratne J, Dietz N, Haboeck U, Hoffmann A, Noveski V, Dalmau R, Schlesser R, Sitar Z (2004) The growth and optical properties of large, high-quality AlN single crystals. J Appl Phys 6:5870–5876

    Google Scholar 

  137. Ambacher O, Brandt MS, Dimitrov R, Fischer RA, Miehr A, Metzger T, Stutzmann M (1996) Thermal stability and desorption of group III nitrides prepared by MOCVD. J Vac Sci Technol 14:3532–3542

    CAS  Google Scholar 

  138. Kim K, Zhang S, Huang W, Yu F, Jiang X (2011) YCa4O(BO3)3 (YCOB) high temperature vibration sensor. J Appl Phys 109(12):126,103

    Google Scholar 

  139. Yu F, Zhang S, Zhao X, Yuan D, Wang Q, Shrout TR (2010) High temperature piezoelectric properties of yttrium calcium oxyborate single crystals. Phys Status Solidi RRL 4:103–105

    CAS  Google Scholar 

  140. Scott H (1975) Phase relationships in the zirconia-yttria system. J Mater Sci 10(9):1527–1535

    CAS  Google Scholar 

  141. Ishibashi K, Kashima T, Asada A (1993) Planar type of limiting current oxygen sensor. Sens Actuators B Chem 13(1–3):41–44

    CAS  Google Scholar 

  142. Saji K, Kondo H, Takahashi H, Futata H, Angata K, Suzuki T (1993) Development of a thin-film oxygen sensor for combustion control of gas appliances. Sens Actuators B Chem 14(1–3):695–696

    CAS  Google Scholar 

  143. Hoshino K, Peterson NL, Wiley CL (1985) Diffusion and point defects in TiO2-x . J Phys Chem Solid 46(12):1397–1411

    CAS  Google Scholar 

  144. Ohly C, Hoffmann-Eifert S, Guo X, Schubert J, Waser R (2006) Electrical conductivity of epitaxial SrTiO3 thin films as a function of oxygen partial pressure and temperature. J Am Ceram Soc 89(9):2845–2852

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Fritze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richter, D., Fritze, H. (2013). High-Temperature Gas Sensors. In: Kohl, CD., Wagner, T. (eds) Gas Sensing Fundamentals. Springer Series on Chemical Sensors and Biosensors, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2013_56

Download citation

Publish with us

Policies and ethics