Skip to main content

Calorimetric Gas Sensors for Hydrogen Peroxide Monitoring in Aseptic Food Processes

  • Chapter
  • First Online:
Gas Sensing Fundamentals

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 15))

  • 1959 Accesses

Abstract

For the sterilisation of aseptic food packages it is taken advantage of the microbicidal properties of hydrogen peroxide (H2O2). Especially, when applied in vapour phase, it has shown high potential of microbial inactivation. In addition, it offers a high environmental compatibility compared to other chemical sterilisation agents, as it decomposes into oxygen and water, respectively. Due to a lack in sensory detection possibilities, a continuous monitoring of the H2O2 concentration was recently not available. Instead, the sterilisation efficacy is validated using microbiological tests. However, progresses in the development of calorimetric gas sensors during the last 7 years have made it possible to monitor the H2O2 concentration during operation. This chapter deals with the fundamentals of calorimetric gas sensing with special focus on the detection of gaseous hydrogen peroxide. A sensor principle based on a calorimetric differential set-up is described. Special emphasis is given to the sensor design with respect to the operational requirements under field conditions. The state-of-the-art regarding a sensor set-up for the on-line monitoring and secondly, a miniaturised sensor for in-line monitoring are summarised. Furthermore, alternative detection methods and a novel multi-sensor system for the characterisation of aseptic sterilisation processes are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to Wallhäußer, sterility is defined as the total absence of viable microorganisms and transferable genetic material [32]. Besides this general definition, “commercial sterility” is an established term in the food industry. It is defined as “the absence of microorganisms capable of growing in food at normal non-refrigerated conditions at which the food is likely to be held during manufacture, distribution and storage” [33]. In this work, sterilisation stands always for “commercial sterilisation” except where noted otherwise.

References

  1. Thénard LJ (1818) Observations sur des nouvelles combinaisons entre l'oxigéne et divers acides. Annales de Chimie et de Physique 8:306–312

    Google Scholar 

  2. Schumb WC, Satterfield CN, Wentwoth RL (1955) Hydrogen peroxide. Reinhold Publishing Corporation, New York

    Google Scholar 

  3. Wolffenstein R (1894) Koncentration und Destillation von Wasserstoffsuperoxyd. Berichte der Deutschen Chemischen Gesellschaft 27(3):3307–3312

    CAS  Google Scholar 

  4. Pokhodenko VD (1994) Life and work of academician L. V. Pisarzhevskii (on the 120th anniversary of his birth). Theoretical Exp Chem 29(6):313–319

    Google Scholar 

  5. Ayling GW (1981) Waste treatment with hydrogen peroxide. Chem Eng 88(24):79–82

    CAS  Google Scholar 

  6. Eul W, Moeller A, Steiner N (2000) Hydrogen peroxide. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, Hoboken

    Google Scholar 

  7. Yaws C, Setty H (1974) Water and hydrogen peroxide. Chem Eng 81(27):67–74

    CAS  Google Scholar 

  8. Jones CW, Clark JH (eds) (1999) Applications of hydrogen peroxide and its derivatives. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  9. Cooper WJ, Zika RG, Petasne RG, Plane JMC (1988) Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Environ Sci Technol 22(10):1156–1160

    CAS  Google Scholar 

  10. Calvert JG, Stockwell WR (1983) Acid generation in the troposphere by gas-phase chemistry. Environ Sci Technol 17(9):428–443

    Google Scholar 

  11. Armogida M, Nistico R, Mercuri NB (2012) Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischaemia. Br J Pharmacol 166(4):1211–1224

    CAS  Google Scholar 

  12. Halliwell B, Clement MV, Long LH (2000) Hydrogen peroxide in the human body. FEBS Lett 486(1):10–13

    CAS  Google Scholar 

  13. Schildknecht H, Holoubek K (1961) Die Bombardierkäfer und ihre Explosionschemie V. Mitteilung über Insektenabwehrstoffe. Angewandte Chemie 73(1):1–7

    Google Scholar 

  14. Goor G, Goor G, Glenneberg J, Jacobi S (2000) Hydrogen peroxide. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  15. Nederhoff E (2000) Hydrogen peroxide for cleaning irrigation system. Comm Grower 55(10):32–34

    Google Scholar 

  16. KEMI Swedish Chemicals Agency (2010) Information on substances – hydrogen peroxide. Technical report

    Google Scholar 

  17. Global Industry Analysts, Inc. (2012) Hydrogen peroxide – a global strategic business report. Document

    Google Scholar 

  18. Hage R, Lienke A (2006) Anwendung von Übergangsmetallkomplexen zum Bleichen von Textilien und Holzpulpe. Angewandte Chemie 118(2):212–229

    Google Scholar 

  19. Miro S, Argyropoulos DS (2001) Catalysis and activation of oxygen and peroxide delignification of chemical pulps: a review. In: ACS symposium series, vol. 785. American Chemical Society, pp. 2–43

    Google Scholar 

  20. Spiro M, Griffith WP (1997) The mechanism of hydrogen peroxide bleaching. Textile Chemist Colorist 29(11):12–13

    CAS  Google Scholar 

  21. Antonijevic M, Dimitrijevic M, Jankovic Z (1997) Leaching of pyrite with hydrogen peroxide in sulphuric acid. Hydrometallurgy 46(1–2):71–83

    CAS  Google Scholar 

  22. Kitis M, Akcil A, Karakaya E, Yigit N (2005) Destruction of cyanide by hydrogen peroxide in tailings slurries from low bearing sulphidic gold ores. Miner Eng 18(3):353–362

    CAS  Google Scholar 

  23. Wernimont E, Ventura M, Garboden G, Mullens P (1999) Past and present uses of rocket grade hydrogen peroxide. Technical report, General Kinetics, LLC

    Google Scholar 

  24. Ansari I, Datta A (2003) An overview of sterilization methods for packaging materials used in aseptic packaging systems. Food Bioproducts Process 81(1):57–65

    CAS  Google Scholar 

  25. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179

    CAS  Google Scholar 

  26. Muranyi P (2008) Einsatz eines Atmosphärendruckplasmas zur Entkeimung von lebensmittelrelevanten Verpackungen aus Kunststoff. Dissertation, Technische Universität München

    Google Scholar 

  27. Wu JSB, Hsu H-Y, Yang B-HB (2012) Aseptic processing and packaging. In: Handbook of fruits and fruit processing. Wiley, Ames, pp 175–187

    Google Scholar 

  28. von Bockelmann BAH, von Bockelmann ILI (1986) Aseptic packaging of liquid food products: a literature review. J Agric Food Chem 34(3):384–392

    Google Scholar 

  29. Muranyi P, Wunderlich J, Dobosz M (2006) Sterilisation von Abfüllmaschinen: Standardisierung von Bioindikatoren, Untersuchungsmethoden und Validierungsverfahren. Chemie Ingenieur Technik 78(11):1667–1673

    CAS  Google Scholar 

  30. Buchner N (ed) (1999) Verpackung von Lebensmitteln, 1st edn. Springer, Berlin

    Google Scholar 

  31. David JRD, Graves RH, Carlson VR (eds) (1996) Aseptic processing and packaging of food: a food industry perspective. CRC, New York

    Google Scholar 

  32. Wallhäußer KH (ed) (1988) Praxis der Sterilisation, Desinfektion, Antiseptik und Konservierung – Keimidentidentifizierung-Betriebshygiene, 4th edn. Thieme, Stuttgart

    Google Scholar 

  33. Codex Alimentarius Commission Code of hygienic practice for aseptically processed and packaged low-acid food (1993) Technical report CAC/RCP 40

    Google Scholar 

  34. Cerny G (1990) Packstoffsterilisation beim aseptischen Abpacken. Internationale Zeitschrift für Lebensmittel-Technik, Marketing, Verpackung und Analytik 41(1–2):54–58

    Google Scholar 

  35. Gould GW (1996) Methods for preservation and extension of shelf life. Int J Food Microbiol 33(1):51–64

    CAS  Google Scholar 

  36. Russell AD (1990) Bacterial spores and chemical sporicidal agents. Clin Microbiol Rev 3(2):99–119

    CAS  Google Scholar 

  37. Reuter H (1986) Aseptisches Verpacken von Lebensmitteln – Grundlagen und Stand der Technik. Chemie Ingenieur Technik 58(10):785–793

    Google Scholar 

  38. Heckert RA, Best M, Jordan LT, Dulac GC, Eddington DL, Sterritt WG (1997) Efficacy of vaporized hydrogen peroxide against exotic animal viruses. Appl Environ Microbiol 63(10):3916–3918

    CAS  Google Scholar 

  39. Cardoso CF, JdAF F, Miranda Walter EH (2011) Modeling of sporicidal effect of hydrogen peroxide in the sterilization of low density polyethylene film inoculated with Bacillus subtilis spores. Food Contr 22(10):1559–1564

    CAS  Google Scholar 

  40. Bayliss CE, Waites WM (1982) Effect of simultaneous high intensity ultraviolet irradiation and hydrogen peroxide on bacterial spores. Int J Food Sci Technol 17(4):467–470

    CAS  Google Scholar 

  41. Engelhard P, Kulozik U (2006) Packstoffentkeimung mittels Wasserstoffperoxid – Methoden und Kombinationsverfahren. Chemie Ingenieur Technik 78(11):1717–1722

    CAS  Google Scholar 

  42. Unger-Bimczok B, Kottke V, Hertel C, Rauschnabel J (2008) The influence of humidity, hydrogen peroxide concentration, and condensation on the inactivation of Geobacillus stearothermophilus spores with hydrogen peroxide vapor. J Pharm Innov 3(2):123–133

    Google Scholar 

  43. Engelhard P (2005) Inaktivieren von Mikroorganismen auf festen Oberflächen mittels Atmosphären aus feuchter Luft/Wasserstoffperoxid und IR-Behandlung. Dissertation, Technische Universität München

    Google Scholar 

  44. Block SS (ed) (1991) Desinfection, sterilization and preservation. Lea and Febiger, Philadelphia

    Google Scholar 

  45. Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240(4857):1302–1309

    CAS  Google Scholar 

  46. Mohan A, Dunn J, Hunt MC, Sizer CE (2009) Inactivation of Bacillus atrophaeus spores with surface-active peracids and characterization of formed free radicals using electron spin resonance spectroscopy. J Food Sci 74(7):M411–M417

    CAS  Google Scholar 

  47. Riesenman PJ, Nicholson WL (2000) Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Appl Environ Microbiol 66(2):620–626

    CAS  Google Scholar 

  48. Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57(1):395–418

    CAS  Google Scholar 

  49. Baldry M (1983) The bactericidal, fungicidal and sporicidal properties of hydrogen peroxide and peracetic acid. J Appl Microbiol 54(3):417–423

    CAS  Google Scholar 

  50. Setlow B, Setlow CA, Setlow P (1997) Killing bacterial spores by organic hydroperoxides. J Ind Microbiol Biotechnol 18(6):384–388

    CAS  Google Scholar 

  51. Linley E, Denyer SP, McDonnell G, Simons C, Maillard J-Y (2012) Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J Antimicrob Chemother 67(7):1589–1596

    CAS  Google Scholar 

  52. Melly E, Cowan A, Setlow P (2002) Studies on the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide. J Appl Microbiol 93(2):316–325

    CAS  Google Scholar 

  53. Popham DL, Sengupta S, Setlow P (1995) Heat, hydrogen peroxide, and UV resistance of Bacillus subtilis spores with increased core water content and with or without major DNA-binding proteins. Appl Environ Microbiol 61(10):3633–3638

    CAS  Google Scholar 

  54. Gilmore ME, Bandyopadhyay D, Dean AM, Linnstaedt SD, Popham DL (2004) Production of muramic δ-lactam in Bacillus subtilis spore peptidoglycan. J Bacteriol 186(1):80–89

    CAS  Google Scholar 

  55. Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101(3):514–525

    CAS  Google Scholar 

  56. Setlow B, Setlow P (1993) Binding of small, acid-soluble spore proteins to DNA plays a significant role in the resistance of Bacillus subtilis spores to hydrogen peroxide. Appl Environ Microbiol 59(10):3418–3423

    CAS  Google Scholar 

  57. Setlow P (1995) Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu Rev Microbiol 49(1):29–54

    CAS  Google Scholar 

  58. Shin S-Y, Calvisi EG, Beaman TC, Pankratz HS, Gerhardt P, Marquis RE (1994) Microscopic and thermal characterization of hydrogen peroxide killing and lysis of spores and protection by transition metal ions, chelators, and antioxidants. Appl Environ Microbiol 60(9):3192–3197

    CAS  Google Scholar 

  59. King WL, Gould GW (1969) Lysis of bacterial spores with hydrogen peroxide. J Appl Microbiol 32(4):481–490

    CAS  Google Scholar 

  60. Palop A, Rutherford GC, Marquis RE (1996) Hydroperoxide inactivation of enzymes within spores of Bacillus megaterium ATCC19213. FEMS Microbiol Lett 142(2–3):283–287

    CAS  Google Scholar 

  61. Cortezzo D, Koziol-Dube K, Setlow B, Setlow P (2004) Treatment with oxidizing agents damages the inner membrane of spores of Bacillus subtilis and sensitizes spores to subsequent stress. J Appl Microbiol 97(4):838–852

    CAS  Google Scholar 

  62. Verband Deutscher Maschinen- und Anlagenbauer (VDMA) (2008) Filling machines of VDMA hygiene class V: testing the effectiveness of packaging sterilization devices. Code of practice 6

    Google Scholar 

  63. Bazin MJ, Prosser JI (eds) (1988) Physiological models in microbiology, vol 2. CRC, Boca Raton

    Google Scholar 

  64. Institute For Thermal Processing Specialists (IFTIPS) (2011) Guidelines for microbiological validation of the sterilization of aseptic filling machines and packages, including containers and closures. Document G.005.V1

    Google Scholar 

  65. Adams D, Brown GP, Fritz C, Todd TR (1998) Calibration of a nearinfrared (NIR) H2O2 vapor monitor. Pharm Eng 18(4):66–85

    Google Scholar 

  66. Corveleyn S, Vandenbossche GMR, Remon JP (1997) Near-infrared (NIR) monitoring of H2O2 vapor concentration during vapor hydrogen peroxide (vhp) sterilisation. Pharm Res 14(3):294–298

    CAS  Google Scholar 

  67. Haney RL (2011) Principal component analysis for enhancement of infrared spectra monitoring. Ph.D. thesis, Auburn University

    Google Scholar 

  68. Xu M, Bunes BR, Zang L (2011) Paper-based vapor detection of hydrogen peroxide: colorimetric sensing with tunable interface. ACS Appl Mater Interfaces 3(3):642–647

    CAS  Google Scholar 

  69. Toniolo R, Geatti P, Bontempelli G, Schiavon G (2001) Amperometric monitoring of hydrogen peroxide in workplace atmospheres by electrodes supported on ion-exchange membranes. J Electroanal Chem 514(1–2):123–128

    CAS  Google Scholar 

  70. Kuwata S, Sadaoka Y (2000) Detection of gaseous hydrogen peroxide using planar-type amperometric cell at room temperature. Sens Actuators B Chem 65(1–3):325–326

    Google Scholar 

  71. Huang H, Dasgupta PK, Genfa Z, Wang J (1996) A pulse amperometric sensor for the measurement of atmospheric hydrogen peroxide. Anal Chem 68(13):2062–2066

    CAS  Google Scholar 

  72. Zheng JY, Yan Y, Wang X, Shi W, Ma H, Zhao YS, Yao J (2012) Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides. Adv Mater 24(35):194–199

    Google Scholar 

  73. Chen LC, Yu Z, Hiraoka K (2010) Vapor phase detection of hydrogen peroxide with ambient sampling chemi/chemical ionization mass spectrometry. Anal Methods 2(7):897–900

    CAS  Google Scholar 

  74. Barsony I, Dücso C, Fürjes P (2009) Thermometric gas sensing. In: Comini E, Faglia G, Sberveglieri G (eds) Solid state gas sensing. Springer, New York

    Google Scholar 

  75. Walsh PT, Jones TA (1991) Calorimetric chemical sensors. In: Göpel W, Hesse J, Zemel JN (eds) Sensors – a comprehensive survey, vol 2. Wiley-VCH, Weinheim

    Google Scholar 

  76. Henderson RE (2002) Portable gas detectors used in confined space and other industrial atmospheric monitoring programs. Technical report, PK safety

    Google Scholar 

  77. Kleven BA (2001) Summary of gas detection. Technical report, Advanced calibration designs

    Google Scholar 

  78. Unwin ID (2007) Mine monitoring for safety and health. Monograph

    Google Scholar 

  79. Korotcenkov G (2007) Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B Chem 121(2):664–678

    CAS  Google Scholar 

  80. Erickson PA (ed) (1996) Practical guide to occupational health and safety. Academic, San Diego

    Google Scholar 

  81. De Smedt G, de Corte F, Notele R, Berghmans J (1999) Comparison of two standard test methods for determining explosion limits of gases at atmospheric conditions. J Hazard Mater 70(3):105–113

    Google Scholar 

  82. Jones TA, Walsh PT (1988) Flammable gas detection. Platinum Metals Rev 32(2):50–60

    CAS  Google Scholar 

  83. Baker A (1962) Improvements in or relating to electrically beatable filaments. UK Patent 892,530

    Google Scholar 

  84. Jones E (1987) The pellistor catalytic gas sensor. In: Moseley P, Tofield B (eds) Solid state gas sensors. Adam Hilger, Bristol

    Google Scholar 

  85. Glassman I (ed) (1996) Combustion, 3rd edn. Academic, San Diego

    Google Scholar 

  86. Haynes WM (ed) (2012) Handbook of chemistry and physics, 93rd edn. CRC, Colorado

    Google Scholar 

  87. McAllister S, Chen J-Y, Fernandez-Pello AC (eds) (2011) Fundamentals of combustion processes, Mechanical engineering series. Springer, New York

    Google Scholar 

  88. Liberman MA (ed) (2008) Introduction to physics and chemistry of combustion. Springer, Berlin

    Google Scholar 

  89. Cottilard SA (ed) (2011) Catalytic combustion. Chemical engineering methods and technology. Nova Science Publisher, New York

    Google Scholar 

  90. Moseley P (1997) Solid state gas sensors. Meas Sci Technol 8(3):223–237

    CAS  Google Scholar 

  91. Gentry S, Jones T (1986) The role of catalysis in solid-state gas sensors. Sens Actuators 10(1–2):141–163

    CAS  Google Scholar 

  92. Korotcenkov G (ed) (2010) Chemical sensors: fundamentals of sensing materials, vol 1, Sensor technology series. Momentum, New York

    Google Scholar 

  93. Firth J, Jones A, Jones T (1973) The principles of the detection of flammable atmospheres by catalytic devices. Combustion Flame 20(3):303–311

    CAS  Google Scholar 

  94. Krebs P, Grisel A (1993) A low power integrated catalytic gas sensor. Sens Actuators B Chem 13(1–3):155–158

    CAS  Google Scholar 

  95. Vauchier C, Charlot D, Delapierre G, Accorsi A (1991) Thin-film gas catalytic microsensor. Sens Actuators B Chem 5(1–4):33–36

    CAS  Google Scholar 

  96. Krawczyk M, Namiesnik J (2003) Application of a catalytic combustion sensor (pellistor) for the monitoring of the explosiveness of a hydrogen-air mixture in the upper explosive limit range. J Automated Methods Manag Chem 25(5):115–122

    CAS  Google Scholar 

  97. Williams G, Coles GS (1999) The semistor: a new concept in selective methane detection. Sens Actuators B Chem 57(1–3):108–114

    CAS  Google Scholar 

  98. Lerchner J, Seidel J, Wolf G, Weber E (1996) Calorimetric detection of organic vapours using inclusion reactions with organic coating materials. Sens Actuators B Chem 32(1):71–75

    CAS  Google Scholar 

  99. Lerchner J, Caspary D, Wolf G (2000) Calorimetric detection of volatile organic compounds. Sens Actuators B Chem 70(1–3):57–66

    CAS  Google Scholar 

  100. Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H (2001) Smart single-chip gas sensor microsystem. Nature 414(6861):293–296

    CAS  Google Scholar 

  101. Company SH (1913) Verfahren und Einrichtung zum Anzeigen von Gasbeimengungen in der Luft, insbesondere von Grubengasen. Patent DRP 283,677

    Google Scholar 

  102. McNair HM, Miller JM (eds) (2009) Basic gas chromatography, 2nd edn. Wiley, Hoboken

    Google Scholar 

  103. Accorsi A, Delapierre G, Vauchier C, Charlot D (1991) A new microsensor for environmental measurements. Sens Actuators B Chem 4(3–4):539–543

    CAS  Google Scholar 

  104. Simon I, Arndt M (2002) Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications. Sens Actuators A Phys 97–98:104–108

    Google Scholar 

  105. Brown JE, Lipták BG (1995) Thermal conductivity detectors. In: Lipták BG (ed) Instrument engineers’ handbook: process measurement and analysis, vol 1. CRC, Boca Raton

    Google Scholar 

  106. Poling BE, Prausnitz JM, O'Connell JP (eds) (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New York

    Google Scholar 

  107. Wassiljewa A (1904) Wärmeleitung in Gasgemischen. Physikalische Zeitschrift 5(22):737–742

    CAS  Google Scholar 

  108. Mason EA, Saxena SC (1958) Approximate formula for the thermal conductivity of gas mixtures. Phys Fluids 1(5):361–369

    CAS  Google Scholar 

  109. Näther N, Henkel H, Schneider A, Schöning MJ (2009) Investigation of different catalytically active and passive materials for realising a hydrogen peroxide gas sensor. Physica Status Solidi A 206(3):449–454

    Google Scholar 

  110. Kirchner P, Li B, Spelthahn H, Henkel H, Schneider A, Friedrich P, Kolstad J, Keusgen M, Schöning MJ (2011) Thin-film calorimetric H2O2 gas sensor for the validation of germicidal effectivity in aseptic filling processes. Sens Actuators B Chem 154:257–263

    CAS  Google Scholar 

  111. Reisert S, Henkel H, Schneider A, Schäfer D, Friedrich P, Berger J, Schöning MJ (2010) Development of a handheld sensor system for the online measurement of hydrogen peroxide in aseptic filling systems. Physica Status Solidi A 207(4):9103–918

    Google Scholar 

  112. Labas MD, Zalazar CS, Brandi RJ, Cassano AE (2008) Reaction kinetics of bacteria disinfection employing hydrogen peroxide. Biochem Eng J 38(1):78–87

    CAS  Google Scholar 

  113. Reisert S, Geissler H, Flörke R, Weiler C, Wagner P, Schöning MJ (2013) Characterization of aseptic sterilization processes using an electronic nose. Int J Nanotechnol 10(5/6/7):470–484

    Google Scholar 

  114. Kirchner P, Ng YA, Spelthahn H, Schneider A, Henkel H, Friedrich P, Kolstad J, Berger J, Keusgen M, Schöning MJ (2010) Gas sensor investigation based on a catalytically activated thin-film thermopile for H2O2 detection. Physica Status Solidi A 207(4):787–792

    CAS  Google Scholar 

  115. Kirchner P, Oberländer J, Friedrich P, Berger J, Rysstad G, Keusgen M, Schöning MJ (2012) Realisation of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry. Sens Actuators B Chem 170:60–66

    CAS  Google Scholar 

  116. Kirchner P, Oberländer J, Friedrich P, Berger J, Suso HP, Kupyna A, Keusgen M, Schöning MJ (2011) Optimisation and fabrication of a calorimetric gas sensor built up on a polyimide substrate for H2O2 monitoring. Physica Status Solidi A 208(6):1235–1240

    CAS  Google Scholar 

  117. Kirchner P, Oberländer J, Suso H-P, Rysstad G, Keusgen M, Schöning MJ (2013) Towards a wireless sensor system for real-time H2O2 monitoring in aseptic food processes. Physica Status Solidi A 210(5):877–883

    Google Scholar 

  118. Reisert S, Geissler H, Flörke R, Näther N, Wagner P, Schöning MJ (2011) Towards a multi-sensor system for the evaluation of aseptic processes employing hydrogen peroxide vapour (H2O2). Physica Status Solidi A 208(6):1351–1356

    CAS  Google Scholar 

  119. Reisert S, Geissler H, Flörke R, Wagner P, Schöning MJ (2011) Controlling aseptic sterilization processes by means of a multi-sensor system. IEEE Workshop on merging fields of computational intelligence and sensor technology (CompSens), 18–22

    Google Scholar 

  120. Näther N, Juarez LM, Emmerich R, Berger J, Friedrich P, Schöning MJ (2006) Detection of hydrogen peroxide (H2O2) at exposed temperatures for industrial processes. Sensors 6:308–317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Schöning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirchner, P., Reisert, S., Schöning, M.J. (2013). Calorimetric Gas Sensors for Hydrogen Peroxide Monitoring in Aseptic Food Processes. In: Kohl, CD., Wagner, T. (eds) Gas Sensing Fundamentals. Springer Series on Chemical Sensors and Biosensors, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2013_51

Download citation

Publish with us

Policies and ethics