Skip to main content

Distributed Environmental Monitoring

  • Chapter
  • First Online:
Autonomous Sensor Networks

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 13))

Abstract

With the increasingly ubiquitous use of web-based technologies in modern society, autonomous sensor networks represent the future in large-scale information acquisition for applications ranging from environmental monitoring to in-vivo sensing. This chapter presents a range of on-going projects with an emphasis on environmental sensing; relevant literature pertaining to sensor networks is reviewed, validated sensing applications are described and the contribution of high-resolution temporal data to better decision-making is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

μFIA:

Micro-flow injection analysis

μTAS:

Miniaturised total analysis system

ANN:

Artificial neural network

DCU:

Dublin City University

EPA:

Environmental Protection Agency

FET:

Field-effect transistor

GC:

Gas chromatography

GHG:

Greenhouse gas(es)

GPRS:

General packet radio service

GSM:

Global system for mobile communications

ICT:

Information and communication technology

IR:

Infra-red

ISE:

Ion selective electrode

LED:

Light emitting diode

LOD:

Limit of detection

MS:

Mass spectroscopy

OEJT:

Organic electrochemical junction transistors

PEDD:

Paired emitter detector diodes

SC-ISE:

Solid contact ion selective electrode

UME:

Ultra miniature electrode

VOC:

Volatile organic compound

WFD:

Water framework directive

WSN:

Wireless sensor network

References

  1. Hartwell P, Stanley Williams R (2010) Cense: central nervous system for the earth. www.slideshare.net/hewlettpackard/hp-cense-sensor-networks-and-the-pulse-of-the-planet. Accessed 2 Oct 2011

  2. Nokia (2010) Morph concept. http://research.nokia.com/news/9415. Accessed 2 Oct 2011

  3. Wollenberger U, Lisdat F, Rose A, Streffer K (2008) Phenolic biosensors bioelectrochemistry. Fundamentals, experimental techniques and applications. Wiley, Chichester

    Google Scholar 

  4. Diamond D, Lau KT, Brady S, Cleary J (2008) Integration of analytical measurements and wireless communications. Current issues and future strategies. Talanta 75(3):606–612. doi:10.1016/j.talanta.2007.11.022

    Article  CAS  Google Scholar 

  5. Diamond D, Coyle S, Scarmagnani S, Hayes J (2008) Wireless sensor networks and chemo-/biosensing. Chem Rev 108(2):652–679. doi:10.1021/cr0681187

    Article  CAS  Google Scholar 

  6. Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Network 52(12):2292

    Article  Google Scholar 

  7. Hayes J, O’Hare G, Kolar H, Diamond D (2009) Building an adaptive environmental monitoring system using sensor web technology. ERCIM News 76:38–49

    Google Scholar 

  8. Diamond D (2004) Internet-scale sensing. Anal Chem 76(15):278–286

    Article  Google Scholar 

  9. Byrne R, Diamond D (2006) Chemo/bio-sensor networks. Nat Mater 5(6):421–424

    Article  CAS  Google Scholar 

  10. Byrne R, Benito-Lopez F, Diamond D (2010) Materials science and the sensor revolution. Mater Today 13(7–8):16–23

    Article  CAS  Google Scholar 

  11. Hübert T, Boon-Brett L, Black G, Banach U (2011) Hydrogen sensors – a review. Sens Actuators B Chem 157(2):329

    Article  CAS  Google Scholar 

  12. Rolfe P (1988) Review of chemical sensors for physiological measurement. J Biomed Eng 10(2):138

    Article  CAS  Google Scholar 

  13. Pretsch E (2007) The new wave of ion-selective electrodes. Trends Analyt Chem 26(1):46

    Article  CAS  Google Scholar 

  14. Bonne U (2008) Gas sensors. In: Yogesh G, Osamu T, Hans Z (eds) Comprehensive microsystems. Elsevier, Oxford, p 375

    Chapter  Google Scholar 

  15. Bernhardt ES, Palmer M, Allan J, Alexander G, Barnas K, Brooks S, Carr J, Clayton S, Dahm C, Follstad-Shah J (2005) Synthesizing us river restoration efforts. Science 308(5722):636

    Article  CAS  Google Scholar 

  16. Dodman D (2009) Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ Urban 21(1):185

    Article  Google Scholar 

  17. Satterthwaite D (2008) Cities’ contribution to global warming: notes on the allocation of greenhouse gas emissions. Environ Urban 20(2):539

    Article  Google Scholar 

  18. European Parliament and Council of the European Union (2008) Directive 2008/50/EC on ambient air quality and cleaner air for Europe

    Google Scholar 

  19. Manning M, Reisinger A (2011) Broader perspectives for comparing different greenhouse gases. Philos Transact R Soc A Math Phys Eng Sci 369(1943):1891

    Article  CAS  Google Scholar 

  20. Hill PM (2000) Possible asphyxiation from carbon dioxide of a cross-country skier in eastern california: a deadly volcanic hazard. Wilderness Environ Med 11(3):192–195

    Article  CAS  Google Scholar 

  21. Matthews CJD, Joyce EM, Louis VLS, Schiff SL, Venkiteswaran JJ, Hall BD, Bodaly RA, Beaty KG (2005) Carbon dioxide and methane production in small reservoirs flooding upland boreal forest. Ecosystems 8(3):267–285

    Article  CAS  Google Scholar 

  22. Streets DG, Waldhoff ST (2000) Present and future emissions of air pollutants in china: So2, nox, and co. Atmos Environ 34(3):363–374

    Article  CAS  Google Scholar 

  23. Burtraw D, Krupnick A, Mansur E, Austin D, Farrell D (1998) Costs and benefits of reducing air pollutants related to acid rain. Contemp Econ Policy 16(4):379–400

    Article  Google Scholar 

  24. Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Academic, San Diego

    Google Scholar 

  25. Correll DL (1996) Buffer zones and water quality protection: general principles. Buffer Zones: Their Processes and Potential in Water Protection 7–20

    Google Scholar 

  26. Galle B, Samuelsson J, Svensson BH, Börjesson G (2001) Measurements of methane emissions from landfills using a time correlation tracer method based on FTIR absorption spectroscopy. Environ Sci Technol 35(1):21–25

    Article  CAS  Google Scholar 

  27. McGettigan M, O’Donnell C, Toner P (2000) National air quality monitoring programme. Environmental Protection Agency, Ireland. Available online: http://www.epa.ie/downloads/pubs/air/quality/epa_%20draft_national_air_quality_monitoring_programme_2000.pdf. Last accessed 23/07/12

  28. De Hoffmann E, Stroobant V (2007) Mass spectrometry: principles and applications. Wiley-Interscience, New York

    Google Scholar 

  29. McNair HM, Miller JM (2009) Basic gas chromatography, vol 17. Wiley-Interscience, New York

    Book  Google Scholar 

  30. Ward RS, Williams GM, Hills CC (1996) Changes in major and trace components of landfill gas during subsurface migration. Waste Manag Res 14(3):243

    CAS  Google Scholar 

  31. Eklund B, Anderson EP, Walker BL, Burrows DB (1998) Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environ Sci Technol 32(15):2233–2237

    Article  CAS  Google Scholar 

  32. Park JW, Shin HC (2001) Surface emission of landfill gas from solid waste landfill. Atmos Environ 35(20):3445–3451

    Article  CAS  Google Scholar 

  33. Mosher BW, Czepiel PM, Harriss RC, Joanne H, Kolb CE, McManus JB, Allwine E, Lamb BK (1999) Methane emissions at nine landfill sites in the northeastern united states. Environ Sci Technol 33(12):2088–2094

    Article  CAS  Google Scholar 

  34. Morrison SR (1987) Selectivity in semiconductor gas sensors. Sens Actuators 12(4):425–440

    Article  CAS  Google Scholar 

  35. Galdikas A, Mironas A, Strazdien V (2000) Room-temperature-functioning ammonia sensor based on solid-state cuxs films. Sens Actuators B Chem 67(1–2):76–83

    Article  Google Scholar 

  36. Donnelly KM, Eggleston AG, Adkins WR, Clauss DA, Ramsier RD (2002) Solid state gas sensors based on tunnel junction geometry. Meas Sci Technol 13:N57

    Article  CAS  Google Scholar 

  37. Meixner H, Gerblinger J, Lampe U, Fleischer M (1995) Thin-film gas sensors based on semiconducting metal oxides. Sens Actuators B Chem 23(2–3):119–125

    Article  Google Scholar 

  38. Sberveglieri G (1995) Recent developments in semiconducting thin-film gas sensors. Sens Actuators B Chem 23(2–3):103–109

    Article  Google Scholar 

  39. Lee AP, Reedy BJ (1999) Temperature modulation in semiconductor gas sensing. Sens Actuators B Chem 60(1):35–42

    Article  Google Scholar 

  40. Moseley PT (1997) Solid state gas sensors. Meas Sci Technol 8:223

    Article  CAS  Google Scholar 

  41. Watson J, Ihokura K, Coles GSV (1993) The tin dioxide gas sensor. Meas Sci Technol 4:711

    Article  Google Scholar 

  42. Jones MG, Nevell TG (1989) The detection of hydrogen using catalytic flammable gas sensors. Sens Actuators 16(3):215–224

    Article  CAS  Google Scholar 

  43. Röck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108(2):705–725

    Article  CAS  Google Scholar 

  44. Porter K, Volman DH (1962) Flame ionization detection of carbon monoxide for gas chromatographic analysis. Anal Chem 34(7):748–749

    Article  CAS  Google Scholar 

  45. Davenport JW (1976) Ultraviolet photoionization cross sections for N2 and CO. Phys Rev Lett 36(16):945–949

    Article  CAS  Google Scholar 

  46. Bakker E (2004) Electrochemical sensors. Anal Chem 76(12):3285–3298

    Article  CAS  Google Scholar 

  47. Jacquinot P, Hodgson AWE, Hauser PC (2001) Amperometric detection of NO and NO2 in the ppb range with solid-polymer electrolyte membrane supported noble metal electrodes. Anal Chim Acta 443(1):53–61

    Article  CAS  Google Scholar 

  48. Ono M, Shimanoe K, Miura N, Yamazoe N (2000) Amperometric sensor based on nasicon and NO oxidation catalysts for detection of total NOx in atmospheric environment. Solid State Ionics 136:583–588

    Article  Google Scholar 

  49. Schiavon G, Zotti G, Toniolo R, Bontempelli G (1995) Electrochemical detection of trace hydrogen sulfide in gaseous samples by porous silver electrodes supported on ion-exchange membranes (solid polymer electrolytes). Anal Chem 67(2):318–323

    Article  CAS  Google Scholar 

  50. Hodgson AWE, Jacquinot P, Hauser PC (1999) Electrochemical sensor for the detection of so2 in the low-ppb range. Anal Chem 71(14):2831–2837

    Article  CAS  Google Scholar 

  51. Anderson GL, Hadden DM (1999) The gas monitoring handbook. Avocet Press, New York

    Google Scholar 

  52. Alberti G, Cherubini F, Palombari R (1996) Amperometric solid-state sensor for no and no2 based on protonic conduction. Sens Actuators B Chem 37(3):131–134

    Article  Google Scholar 

  53. Saito M, Kikuchi K (1997) Infrared optical fiber sensors. Opt Rev 4(5):527–538

    Article  CAS  Google Scholar 

  54. London JW, Bell AT (1973) Infrared spectra of carbon monoxide, carbon dioxide, nitric oxide, nitrogen dioxide, nitrous oxide, and nitrogen adsorbed on copper oxide. J Catal 31(1):32–40

    Article  CAS  Google Scholar 

  55. Horrocks AR, Price D, Akalin M (1996) Ftir analysis of gases evolved from cotton and flame retarded cotton fabrics pyrolysed in air. Polym Degrad Stab 52(2):205–213

    Article  CAS  Google Scholar 

  56. Auble DL, Meyers TP (1992) An open path, fast response infrared absorption gas analyzer for H2O and CO2. Boundary Layer Meteorol 59(3):243–256

    Article  Google Scholar 

  57. Shepherd R, Beirne S, Lau KT, Corcoran B, Diamond D (2007) Monitoring chemical plumes in an environmental sensing chamber with a wireless chemical sensor network. Sens Actuators B Chem 121(1):142–149

    Article  CAS  Google Scholar 

  58. Paschotta R (2008) Encyclopedia of laser physics and technology: A–M, vol 1. Wiley-VCH, Weinheim

    Google Scholar 

  59. Ohira S-I, Wanigasekara E, Rudkevich DM, Dasgupta PK (2009) Sensing parts per million levels of gaseous NO2 by a optical fiber transducer based on calix[4]arenes. Talanta 77(5):1814–1820

    Article  CAS  Google Scholar 

  60. O’Toole M, Shepherd R, Wallace GG, Diamond D (2009) Inkjet printed led based ph chemical sensor for gas sensing. Anal Chim Acta 652(1–2):308–314

    Article  CAS  Google Scholar 

  61. Orpen D, Beirne S, Fay C, Lau KT, Corcoran B, Diamond D (2010) The optimisation of a paired emitter-detector diode optical pH sensing device. Sens Actuators B Chem 153(1):182–187

    Article  CAS  Google Scholar 

  62. Shepherd RL, Yerazunis WS, Lau KT, Diamond D (2006) Low-cost surface-mount led gas sensor. IEEE Sens J 6(4):861–866

    Article  CAS  Google Scholar 

  63. Beirne S, Corcoran B, Lau KT, Diamond D (2008) Chemical event tracking using a low-cost wireless chemical sensing network. In: Sensors, 2008 IEEE, pp 1615–1618

    Google Scholar 

  64. Lau KT, Baldwin S, O’Toole M, Shepherd R, Yerazunis WJ, Izuo S, Ueyama S, Diamond D (2006) A low-cost optical sensing device based on paired emitter-detector light emitting diodes. Anal Chim Acta 557(1–2):111–116

    Article  CAS  Google Scholar 

  65. Beirne S (2008) Development of a low power reactive wireless chemical sensing network. School of Mechanical & Manufacturing Engineering, Faculty of Engineering and Computing, Dublin City University, Dublin

    Google Scholar 

  66. Fraser SM, Edmonds TE, West TS (1986) Development of a multi-sensor system using coated piezoelectric crystal detectors. Analyst 111(10):1183–1188

    Article  CAS  Google Scholar 

  67. Klinkhachorn P, Huner B, Overton EB, Dharmasena HP, Gustowski DA (1990) Microprocessor-based piezoelectric quartz microbalance system for compound-specific detection. IEEE Trans Instrum Meas 39(1):264–268

    Article  CAS  Google Scholar 

  68. Barko G, Hlavay J (1997) Application of an artificial neural network (ann) and piezoelectric chemical sensor array for identification of volatile organic compounds. Talanta 44(12):2237

    Article  CAS  Google Scholar 

  69. Becher C, Kaul P, Mitrovics J, Warmer J (2010) The detection of evaporating hazardous material released from moving sources using a gas sensor network. Sens Actuators B Chem 146(2):513

    Article  CAS  Google Scholar 

  70. Somov A, Baranov A, Savkin A, Spirjakin D, Spirjakin A, Passerone R (2011) Development of wireless sensor network for combustible gas monitoring. Sens Actuators A Phys 171:398–405

    Article  CAS  Google Scholar 

  71. Fay C, Doherty AR, Beirne S, Collins F, Foley C, Healy J, Kiernan BM, Lee H, Maher D, Orpen D (2011) Remote real-time monitoring of subsurface landfill gas migration. Sensors 11(7):6603–6628

    Article  CAS  Google Scholar 

  72. Karellas NS, Chen QF, Brou GBD, Milburn RK (2003) Real time air monitoring of hydrogen chloride and chlorine gas during a chemical fire. J Hazard Mater 102(1):105

    Article  CAS  Google Scholar 

  73. Neuman W (2006) M.T.A. To upgrade chemical-detection system. Available online: http://www.nytimes.com/2006/10/03/nyregion/03security.html. Last accessed 23/07/12

  74. Kiell J (2003) Program for response options and technology enhancements for chemical-biological terrorism. Department of Defense. Available online: http://transit-safety.volpe.dot.gov/security/pdf/protect_factsheet.pdf. Last accessed 23/07/12

  75. Beirne S, Kiernan BM, Fay C, Foley C, Corcoran B, Smeaton AF, Diamond D (2010) Autonomous greenhouse gas measurement system for analysis of gas migration on landfill sites. In: Sensors Applications Symposium (SAS), 2010 IEEE, pp 143–148

    Google Scholar 

  76. Collins F, Orpen D, Maher D, Cleary J, Fay C, Diamond D (2011) Distributed chemical sensor networks for environmental sensing. In: SENSORDEVICES 2011, The Second International Conference on Sensor Device Technologies and Applications, 2011, pp 58–62

    Google Scholar 

  77. Kiernan BM, Beirne S, Fay C, Diamond D (2008) Landfill gas monitoring at borehole wells using an autonomous environmental monitoring system. In: Proceedings of World Academy of Science, Engineering and Technology, 2008. World Academy of Science, Engineering and Technology, pp 166–171

    Google Scholar 

  78. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B 1:244–248

    Article  Google Scholar 

  79. Abgrall P, Gue AM (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem – a review. J Micromech Microeng 17:R15–R49

    Article  Google Scholar 

  80. Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111

    Article  CAS  Google Scholar 

  81. Gardolinski PCFC, David ARJ, Worsfold PJ (2002) Miniature flow injection analyser for laboratory, shipboard and in situ monitoring of nitrate in estuarine and coastal waters. Talanta 58:1015–1027

    Article  CAS  Google Scholar 

  82. Doku GN, Haswell SJ (1999) Further studies into the development of a micro-fia (mu fia) system based on electroosmotic flow for the determination of phosphate as orthophosphate. Anal Chim Acta 382:1–13

    Article  CAS  Google Scholar 

  83. Greenway GM, Haswell SJ, Petsul PH (1999) Characterisation of a micro-total analytical system for the determination of nitrite with spectrophotometric detection. Anal Chim Acta 387:1–10

    Article  CAS  Google Scholar 

  84. Petsul PH, Greenway GM, Haswell SJ (2001) The development of an on-chip micro-flow injection analysis of nitrate with a cadmium reductor. Anal Chim Acta 428:155–161

    Article  CAS  Google Scholar 

  85. Daridon A, Sequeira M, Pennarun-Thomas G, Dirac H, Krog JP, Gravesen P, Lichtenberg J, Diamond D, Verpoorte E, de Rooij NF (2001) Chemical sensing using an integrated ufluidic system based on colorimetrics: a comparative kinetic study of the bertholet reaction for ammonia determination in microfluidic and spectrophotometric systems. Sens Actuators B 76:235–243

    Article  Google Scholar 

  86. Azzaro F, Galletta M (2006) Automatic colorimetric analyzer prototype for high frequency measurement of nutrients in seawater. Mar Chem 99:191–198

    Article  CAS  Google Scholar 

  87. Moscetta P (2009) The new in-situ chemical probes. In: Environmental Risk Management tools for water quality monitoring. National Oceanography Centre, Southampton, UK, 30 Mar 2009

    Google Scholar 

  88. Thompson I (2009) Warmer project. In: Environmental Risk Management tools for water quality monitoring. National Oceanography Centre, Southampton, UK, 30 Mar 2009

    Google Scholar 

  89. Alliance for Coastal Technologies (2007) ACT performance demonstration statement for the ysi 9600 nitrate monitor. URL: http://www.act-us.info/evaluation_reports.php. Last accessed 21/9/11

  90. Alliance for Coastal Technologies (2008) ACT performance demonstration statement for the American Ecotech NUT 1000. URL: http://www.act-us.info/evaluation_reports.php. Last accessed 21/9/11

  91. Alliance for Coastal Technologies (2008) ACT performance demonstration statement for the WET Labs Cycle-P nutrient analyzer. URL: http://www.act-us.info/evaluation_reports.php. Last accessed 21/9/11

  92. Vuillemin R, LeRoux D, Dorval P, Bucas K, Sudreau JP, Hamon M, LeGall C, Sarradin PM (2009) Chemini: a new in situ chemical miniaturized analyzer. Deep Sea Res Part I Oceanogr Res Pap 26:1391–1399

    Article  CAS  Google Scholar 

  93. Koch CR, Ingle JD, Remcho VT (2008) Miniaturizing the whole device: micrototal-analysis system for in-situ colorimetric water quality monitoring. In: Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences, San Diego, CA, 12–16 Oct 2008

    Google Scholar 

  94. Sieben VJ, Beaton AD, Floquet CFA, Kaed Bey SA, Ogilvie IRG, Waugh EM, Ang JKC, Mowlem MC, Morgan H (2010) Autonomous microfluidic sensors for nutrient detection: applied to nitrite, nitrate, phosphate, manganese and iron. In: 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Groningen, The Netherlands, 3–7 Oct 2010

    Google Scholar 

  95. Sieben VJ, Floquet CFA, Ogilvie IRG, Mowlem MC, Morgan H (2010) Microfluidic colourimetric chemical analysis system: application to nitrite detection. Anal Methods 2:484–491

    Article  CAS  Google Scholar 

  96. Sequeira M, Diamond D (2002) Progress in the realisation of an autonomous environmental monitoring device for ammonia. Trends Anal Chem 21:816–827

    Article  CAS  Google Scholar 

  97. Bowden M, Sequeira M, Krog JP, Gravesen P, Diamond D (2002) A prototype industrial sensing system for phosphorus based on micro system technology. Analyst 127:1–4

    Article  CAS  Google Scholar 

  98. Bowden M, Sequiera M, Krog JP, Gravesen P, Diamond D (2002) Analysis of river water samples utilising a prototype industrial sensing system for phosphorus based on micro-system technology. J Environ Monit 4:767–771

    Article  CAS  Google Scholar 

  99. European Commission for the Environment (2010) The EU Water Framework Directive

    Google Scholar 

  100. Lepom P, Brown B, Hanke G, Loos R, Quevauviller P, Wollgast J (2009) Needs for reliable analytical methods for monitoring chemical pollutants in surface water under the european water framework directive. J Chromatogr A 1216(3):302

    Article  CAS  Google Scholar 

  101. Wang W-S, Huang H-Y, Chen S-C, Ho K-C, Lin C-Y, Chou T-C, Hu C-H, Wang W-F, Wu C-F, Luo C-H (2011) Real-time telemetry system for amperometric and potentiometric electrochemical sensors. Sensors 11(9):8593–8610

    Article  Google Scholar 

  102. Yang X, Ong KG, Dreschel WR, Zeng K, Mungle CS, Grimes CA (2002) Design of a wireless sensor network for long-term, in-situ monitoring of an aqueous environment. Sensors 2(11):455–472

    Article  CAS  Google Scholar 

  103. Ong KG, Yang X, Mukherjee N, Surender HW, Shrawan GCA (2004) A wireless sensor network for long-term monitoring of aquatic environments: design and implementation. Sens Lett 2(1):48–57

    Article  Google Scholar 

  104. Zhu X, Li D, He D, Wang J, Ma D, Li F (2010) A remote wireless system for water quality online monitoring in intensive fish culture. Comput Electron Agric 71(Suppl 1):S3

    Article  Google Scholar 

  105. Capella JV, Bonastre A, Ors R, Peris M (2010) A wireless sensor network approach for distributed in-line chemical analysis of water. Talanta 80(5):1789

    Article  CAS  Google Scholar 

  106. Okolisa Z (2009) Wireless waste monitoring sensor network. Gradevinar 61(2):205–208

    Google Scholar 

  107. Ilyas M, Mahgoub I (2004) Handbook of sensor networks: compact wireless and wired sensing systems. CRC Press, Boca Raton

    Book  Google Scholar 

  108. Buffle J, Horvai G (2000) In situ monitoring of aquatic systems: chemical analysis and speciation. Wiley, UK

    Google Scholar 

  109. O’Flynn B, Regan F, Lawlor A, Wallace J, Torres J, O’Mathuna C (2010) Experiences and recommendations in deploying a real-time, water quality monitoring system. Meas Sci Technol 21(12):124004

    Article  CAS  Google Scholar 

  110. McGraw CM, Stitzel SE, Cleary J, Slater C, Diamond D (2007) Autonomous microfluidic system for phosphate detection. Talanta 71:1180–1185

    Article  CAS  Google Scholar 

  111. Slater C, Cleary J, McGraw CM, Yerazunis WS, Lau KT, Diamond D (2007) Autonomous field-deployable device for the measurement of phosphate in natural water. Proceedings of SPIE 6755:67550L67551–67550L67558

    Article  CAS  Google Scholar 

  112. Cleary J, Slater C, McGraw CM, Diamond D (2008) An autonomous microfluidic sensor for phosphate: on-site analysis of treated wastewater. IEEE Sens J 8:508–515

    Article  CAS  Google Scholar 

  113. Lau KT, Baldwin S, Shepherd RL, Dietz PH, Yerazunis WS, Diamond D (2004) Fused-led devices as optical sensors for colorimetric analysis. Talanta 63:167–173

    Article  CAS  Google Scholar 

  114. O’Toole M, Lau K-T, Diamond D (2005) Photometric detection in flow analysis systems using integrated pedds. Talanta 66:1340–1344

    Article  CAS  Google Scholar 

  115. Kim JH, Lau KT, Fay C, Diamond D (2008) Development of optical sensing system for detection of Fe ions using conductive polymer actuator based microfluidic pump. In: IEEE Sensors 2008, Lecce, Italy, 26–29 Oct 2008

    Google Scholar 

  116. Farré M, Kantiani L, Pérez S, Barceló D (2009) Sensors and biosensors in support of eu directives. Trends Anal Chem 28(2):170–185. doi:10.1016/j.trac.2008.09.018

    Article  CAS  Google Scholar 

  117. Privett BJ, Shin JH, Schoenfisch MH (2008) Electrochemical sensors. Anal Chem 80(12):4499–4517. doi:10.1021/ac8007219

    Article  CAS  Google Scholar 

  118. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8(3):1400–1458

    Article  CAS  Google Scholar 

  119. Sassa F, Morimoto K, Satoh W, Suzuki H (2008) Electrochemical techniques for microfluidic applications. Electrophoresis 29(9):1787–1800. doi:10.1002/elps.200700581

    Article  CAS  Google Scholar 

  120. Montornes JM, Vreeke MS, Katakis I (2008) Glucose biosensors. In: Bartlett PN (ed) Bioelectrochemistry. Fundamentals, experimental techniques and applications. Wiley, Chichester, pp 199–218

    Google Scholar 

  121. Oliveira-Brett AM (2008) Electrochemical DNA assays. In: Bartlett PN (ed) Bioelectrochemistry. Fundamentals, experimental techniques and applications. Wiley, Chichester, pp 430–442

    Google Scholar 

  122. Yakovleva J, Emnéus J (2008) Electrochemical immunoassays. In: Bartlett PN (ed) Bioelectrochemistry. Fundamentals, experimental, techniques and applications. Wiley, Chichester, pp 376–410

    Google Scholar 

  123. Schuhmann W, Bonsen EM (2003) Biosensors. In: Bard AJ, Stratmann M, Unwin PR (eds) Encyclopedia of electrochemistry: instrumentation and electroanalytical chemistry, vol 3. Wiley-VCH, Weinheim, pp 350–383

    Google Scholar 

  124. Wijayawardhana CA, Halsall HB, Heineman WR (2002) Electrochemical immunoassay. In: Bard AJ, Wilson GS, Stratmann M (eds) Encyclopedia of electrochemistry, bioelectrochemistry, vol 9. Wiley-VCH, Weinheim, pp 145–174

    Google Scholar 

  125. Bobacka J, Ivaska A (2010) Chemical sensors based on conducting polymers. In: Cosnier S, Karyakin A (eds) Electropolymerization. Concepts, materials, and applications. Wiley-VCH, Weinheim, pp 173–187

    Chapter  Google Scholar 

  126. Yun K-S, Gil J, Kim J, Kim H-J, Kim K, Park D, Ms K, Shin H, Lee K, Kwak J, Yoon E (2004) A miniaturized low-power wireless remote environmental monitoring system based on electrochemical analysis. Sens Actuators B Chem 102(1):27–34. doi:10.1016/j.snb.2003.11.008

    Article  CAS  Google Scholar 

  127. Hanrahan G, Patil DG, Wang J (2004) Electrochemical sensors for environmental monitoring: design, development and applications. J Environ Monit 6(8):657–664

    Article  CAS  Google Scholar 

  128. Bakker E, Telting-Diaz M (2002) Electrochemical sensors. Anal Chem 74(12):2781–2800. doi:10.1021/ac0202278

    Article  CAS  Google Scholar 

  129. Morrin A, Killard AJ, Smyth MR (2003) Electrochemical characterization of commercial and home-made screen printed carbon electrodes. Anal Lett 36(9):2021–2039

    Article  CAS  Google Scholar 

  130. Renedo OD, Alonso-Lomillo MA, Martínez MJA (2007) Recent developments in the field of screen-printed electrodes and their related applications. Talanta 73(2):202–219. doi:10.1016/j.talanta.2007.03.050

    Article  CAS  Google Scholar 

  131. Hart JP, Crew A, Crouch E, Honeychurch KC, Pemberton RM (2007) Chapter 23: screen-printed electrochemical (bio) sensors in biomedical, environmental and industrial applications. In: Alegret S, Merkoçi A (eds) Comprehensive analytical chemistry, vol 49. Elsevier, Amsterdam, pp 497–557

    Google Scholar 

  132. Wang J (2007) Electrochemical sensing of explosives. Electroanalysis 19(4):415–423. doi:10.1002/elan.200603748

    Article  CAS  Google Scholar 

  133. del Valle M (2007) Potentiometric electronic tongues applied in ion multidetermination. In: Alegret S, Merkoci A (eds) Electrochemical sensor analysis. Comprehensive analytical chemistry, vol 49. Elsevier, Amsterdam, pp 721–753

    Google Scholar 

  134. Bard AJ, Faulkner LR (2006) Stripping analysis. In: Electrochemical methods: fundamentals and applications. Wiley India Pvt. Ltd., Delhi, pp 458–464

    Google Scholar 

  135. Wang J (2003) Stripping analysis. In: Bard AJ, Stratmann M, Unwin PR (eds) Encyclopedia of electrochemistry: instrumentation and electroanalytical chemistry, vol 3. Wiley-VCH, Weinheim, pp 125–132

    Google Scholar 

  136. Ward Jones SE, Chevallier FG, Paddon CA, Compton RG (2007) General theory of cathodic and anodic stripping voltammetry at solid electrodes: mathematical modeling and numerical simulations. Anal Chem 79(11):4110–4119. doi:10.1021/ac070046b

    Article  CAS  Google Scholar 

  137. Fu X, Benson RF, Wang J, Fries D (2005) Remote underwater electrochemical sensing system for detecting explosive residues in the field. Sens Actuators B Chem 106(1):296–301. doi:10.1016/j.snb.2004.08.015

    Article  CAS  Google Scholar 

  138. Wang J, Tian B, Wang J, Lu J, Olsen C, Yarnitzky C, Olsen K, Hammerstrom D, Bennett W (1999) Stripping analysis into the 21st century: faster, smaller, cheaper, simpler and better. Anal Chim Acta 385(1–3):429–435. doi:10.1016/s0003-2670(98)00664-3

    Article  CAS  Google Scholar 

  139. Wang J (2007) Chapter 6: stripping-based electrochemical metal sensors for environmental monitoring. In: Alegret S, Merkoçi A (eds) Comprehensive analytical chemistry, vol 49. Elsevier, Amsterdam, pp 131–141

    Google Scholar 

  140. Wang J (2002) Real-time electrochemical monitoring: toward green analytical chemistry. Acc Chem Res 35(9):811–816. doi:10.1021/ar010066e

    Article  CAS  Google Scholar 

  141. Braungardt CB, Achterberg EP, Axelsson B, Buffle J, Graziottin F, Howell KA, Illuminati S, Scarponi G, Tappin AD, Tercier-Waeber M-L, Turner D (2009) Analysis of dissolved metal fractions in coastal waters: an inter-comparison of five voltammetric in situ profiling (VIP) systems. Mar Chem 114(1–2):47–55. doi:10.1016/j.marchem.2009.03.006

    Article  CAS  Google Scholar 

  142. Kadara RO, Tothill IE (2005) Resolving the copper interference effect on the stripping chronopotentiometric response of lead(ii) obtained at bismuth film screen-printed electrode. Talanta 66(5):1089–1093. doi:10.1016/j.talanta.2005.01.020

    Article  CAS  Google Scholar 

  143. Kadara RO, Tothill IE (2008) Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (ii) and cadmium (ii) in soil and water samples. Anal Chim Acta 623(1):76–81. doi:10.1016/j.aca.2008.06.010

    Article  CAS  Google Scholar 

  144. Honeychurch KC, Hart JP (2003) Screen-printed electrochemical sensors for monitoring metal pollutants. Trends Anal Chem 22(7):456–469. doi:10.1016/s0165-9936(03)00703-9

    Article  CAS  Google Scholar 

  145. Trojanowicz M, Koźmiński P, Dias H, Brett CMA (2005) Batch-injection stripping voltammetry (tube-less flow-injection analysis) of trace metals with on-line sample pretreatment. Talanta 68(2):394–400. doi:10.1016/j.talanta.2005.08.065

    CAS  Google Scholar 

  146. Economou A (2010) Recent developments in on-line electrochemical stripping analysis—an overview of the last 12 years. Anal Chim Acta 683(1):38–51. doi:10.1016/j.aca.2010.10.017

    Article  CAS  Google Scholar 

  147. Nasraoui R, Floner D, Paul-Roth C, Geneste F (2010) Flow electroanalytical system based on cyclam-modified graphite felt electrodes for lead detection. J Electroanal Chem 638(1):9–14. doi:10.1016/j.jelechem.2009.10.028

    Article  CAS  Google Scholar 

  148. Nasraoui R, Floner D, Geneste F (2010) Improvement in performance of a flow electrochemical sensor by using carbamoyl-arms polyazamacrocycle for the preconcentration of lead ions onto the electrode. Electrochem Commun 12(1):98–100. doi:10.1016/j.elecom.2009.10.045

    Article  CAS  Google Scholar 

  149. Bard AJ, Faulkner LR (2006) Selective electrodes. In: Electrochemical methods: fundamentals and applications. Wiley India Pvt. Ltd., Delhi, pp 74–81

    Google Scholar 

  150. Amemiya S (2007) Potentiometric ion-selective electrodes. In: Zoski CG (ed) Handbook of electrochemistry. Elsevier, Amsterdam, pp 261–294

    Chapter  Google Scholar 

  151. Bard AJ, Faulkner LR (2006) Electrochemical instrumentation. In: Electrochemical methods: fundamentals and applications. Wiley India Pvt. Ltd., Delhi, pp 632–658

    Google Scholar 

  152. Wipf D (2007) Analog and digital instrumentation. In: Zoski CG (ed) Handbook of electrochemistry. Elsevier, Amsterdam, pp 24–50

    Google Scholar 

  153. Radu A, Peper S, Bakker E, Diamond D (2007) Guidelines for improving the lower detection limit of ion-selective electrodes: a systematic approach. Electroanalysis 19(2–3):144–154. doi:10.1002/elan.200603741

    Article  CAS  Google Scholar 

  154. Radu A, Meir AJ, Bakker E (2004) Dynamic diffusion model for tracing the real-time potential response of polymeric membrane ion-selective electrodes. Anal Chem 76(21):6402–6409. doi:10.1021/ac049348t

    Article  CAS  Google Scholar 

  155. Ceresa A, Radu A, Peper S, Bakker E, Pretsch E (2002) Rational design of potentiometric trace level ion sensors. A ag + −selective electrode with a 100 ppt detection limit. Anal Chem 74(16):4027–4036. doi:10.1021/ac025548y

    Article  CAS  Google Scholar 

  156. Telting-Diaz M, Bakker E (2001) Effect of lipophilic ion-exchanger leaching on the detection limit of carrier-based ion-selective electrodes. Anal Chem 73(22):5582–5589. doi:10.1021/ac010526h

    Article  CAS  Google Scholar 

  157. Bereczki R, Takács B, Langmaier J, Neely M, Gyurcsányi RE, Tóth K, Nagy G, Lindner E (2005) How to assess the limits of ion-selective electrodes: method for the determination of the ultimate span, response range, and selectivity coefficients of neutral carrier-based cation selective electrodes. Anal Chem 78(3):942–950. doi:10.1021/ac050614s

    Article  CAS  Google Scholar 

  158. Sokalski T, Zwickl T, Bakker E, Pretsch E (1999) Lowering the detection limit of solvent polymeric ion-selective electrodes. 1. Modeling the influence of steady-state ion fluxes. Anal Chem 71(6):1204–1209. doi:10.1021/ac980944v

    Article  CAS  Google Scholar 

  159. Fibbioli M, Morf WE, Badertscher M, de Rooij NF, Pretsch E (2000) Potential drifts of solid-contacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane. Electroanalysis 12(16):1286–1292. doi:10.1002/1521-4109(200011)12:16<1286::aid-elan1286>3.0.co;2-q

    Article  CAS  Google Scholar 

  160. Bobacka J, Ivaska A, Lewenstam A (2008) Potentiometric ion sensors. Chem Rev 108(2):329–351. doi:10.1021/cr068100w

    Article  CAS  Google Scholar 

  161. Wardak C (2011) A highly selective lead-sensitive electrode with solid contact based on ionic liquid. J Hazard Mater 186(2–3):1131–1135. doi:10.1016/j.jhazmat.2010.11.103

    Article  CAS  Google Scholar 

  162. Radu A, Diamond D (2007) Chapter 2: ion-selective electrodes in trace level analysis of heavy metals: potentiometry for the xxi century. In: Alegret S, Merkoçi A (eds) Comprehensive analytical chemistry, vol 49. Elsevier, Amsterdam, pp 25–52

    Google Scholar 

  163. Parra EJ, Blondeau P, Crespo GA, Rius FX (2011) An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for pb2+ determination. Chem Commun 47(8):2438–2440

    Article  CAS  Google Scholar 

  164. Faridbod F, Norouzi P, Dinarvand R, Ganjali M (2008) Developments in the field of conducting and non-conducting polymer based potentiometric membrane sensors for ions over the past decade. Sensors 8(4):2331–2412

    Article  Google Scholar 

  165. Bobacka J (2006) Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis 18(1):7–18. doi:10.1002/elan.200503384

    Article  CAS  Google Scholar 

  166. Lindner E, Gyurcsányi R (2009) Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. J Solid State Electrochem 13(1):51–68. doi:10.1007/s10008-008-0608-1

    Article  CAS  Google Scholar 

  167. McGraw CM, Radu T, Radu A, Diamond D (2008) Evaluation of liquid- and solid-contact, pb2 + −selective polymer-membrane electrodes for soil analysis. Electroanalysis 20(3):340–346. doi:10.1002/elan.200704068

    Article  CAS  Google Scholar 

  168. Bobacka J, Ivaska A (2007) Chapter 4: ion sensors with conducting polymers as ion-to-electron transducers. In: Alegret S, Merkoçi A (eds) Comprehensive analytical chemistry, vol 49. Elsevier, Amsterdam, pp 73–86

    Google Scholar 

  169. Veder J-P, De Marco R, Clarke G, Chester R, Nelson A, Prince K, Pretsch E, Bakker E (2008) Elimination of undesirable water layers in solid-contact polymeric ion-selective electrodes. Anal Chem 80(17):6731–6740. doi:10.1021/ac800823f

    Article  CAS  Google Scholar 

  170. Sutter J, Lindner E, Gyurcsányi RE, Pretsch E (2004) A polypyrrole-based solid-contact pb-selective pvc-membrane electrode with a nanomolar detection limit. Anal Bioanal Chem 380(1):7–14. doi:10.1007/s00216-004-2737-4

    Article  CAS  Google Scholar 

  171. Anastasova-Ivanova S, Mattinen U, Radu A, Bobacka J, Lewenstam A, Migdalski J, Danielewski M, Diamond D (2010) Development of miniature all-solid-state potentiometric sensing system. Sens Actuators B Chem 146(1):199–205. doi:10.1016/j.snb.2010.02.044

    Article  CAS  Google Scholar 

  172. Anastasova S, Radu A, Matzeu G, Zuliani C, Diamond D, Mattinen U, Bobacka J (2012) Disposable solid-contact ion-selective electrodes for environmental monitoring of lead with ppb. Electrochimica Acta 73:93–97

    Article  CAS  Google Scholar 

  173. Radu A, Anastasova-Ivanova S, Paczosa-Bator B, Danielewski M, Bobacka J, Lewenstam A, Diamond D (2010) Diagnostic of functionality of polymer membrane – based ion selective electrodes by impedance spectroscopy. Anal Methods 2(10):1490–1498

    Article  CAS  Google Scholar 

  174. Bakker E, Meyerhoff ME (2002) Ion-selective electrodes for measurements in bological samples. In: Bard AJ, Wilson GS, Stratmann M (eds) Encyclopedia of electrochemistry, bioelectrochemistry, vol 9. Wiley-VCH, Weinheim, Germany, pp 277–307

    Google Scholar 

  175. Phillips F, Kaczor K, Gandhi N, Pendley BD, Danish RK, Neuman MR, Tóth B, Horváth V, Lindner E (2007) Measurement of sodium ion concentration in undiluted urine with cation-selective polymeric membrane electrodes after the removal of interfering compounds. Talanta 74(2):255–264. doi:10.1016/j.talanta.2007.06.011

    Article  CAS  Google Scholar 

  176. Bakker E, Bhakthavatsalam V, Gemene KL (2008) Beyond potentiometry: robust electrochemical ion sensor concepts in view of remote chemical sensing. Talanta 75(3):629–635. doi:10.1016/j.talanta.2007.10.021

    Article  CAS  Google Scholar 

  177. Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors. Nat Mater 2(1):19–24

    Article  CAS  Google Scholar 

  178. Mousavi Z, Ekholm A, Bobacka J, Ivaska A (2009) Ion-selective organic electrochemical junction transistors based on poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate). Electroanalysis 21(3–5):472–479. doi:10.1002/elan.200804427

    Article  CAS  Google Scholar 

  179. Guth U, Gerlach F, Decker M, Oelßner W, Vonau W (2009) Solid-state reference electrodes for potentiometric sensors. J Solid State Electrochem 13(1):27–39. doi:10.1007/s10008-008-0574-7

    Article  CAS  Google Scholar 

  180. Wei D, Bailey MJA, Andrew P, Ryhanen T (2009) Electrochemical biosensors at the nanoscale. Lab Chip 9(15):2123–2131

    Article  CAS  Google Scholar 

  181. Forster RJ, Keyes TE (2007) Ultramicroelectrodes. In: Zoski CG (ed) Handbook of electrochemistry. Elsevier, Netherlands, pp 155–188

    Chapter  Google Scholar 

  182. Forster RJ (2003) Microelectrodes-retrospect and prospect. In: Bard AJ, Stratmann M, Unwin PR (eds) Encyclopedia of electrochemistry: instrumentation and electroanalytical chemistry, vol 3. Wiley-VCH, Weinheim, Germany, pp 160–195

    Google Scholar 

  183. Tercier-Waeber M-L, Taillefert M (2008) Remote in situ voltammetric techniques to characterize the biogeochemical cycling of trace metals in aquatic systems. J Environ Monit 10(1):30–54

    Article  CAS  Google Scholar 

  184. Orozco J, Fernández-Sánchez C, Jiménez-Jorquera C (2010) Ultramicroelectrode array based sensors: a promising analytical tool for environmental monitoring. Sensors 10(1):475–490. doi:10.3390/s100100475

    Article  CAS  Google Scholar 

  185. Ordeig O, del Campo J, Muñoz FX, Banks CE, Compton RG (2007) Electroanalysis utilizing amperometric microdisk electrode arrays. Electroanalysis 19(19–20):1973–1986. doi:10.1002/elan.200703914

    Article  CAS  Google Scholar 

  186. Szunerits S, Thouin L (2007) Microelectrode arrays. In: Zoski CG (ed) Handbook of electrochemistry. Elsevier, Netherlands, pp 391–428

    Chapter  Google Scholar 

  187. Pei J, Tercier-Waeber M-L, Buffle J, Fiaccabrino GC, Koudelka-Hep M (2001) Individually addressable gel-integrated voltammetric microelectrode array for high-resolution measurement of concentration profiles at interfaces. Anal Chem 73(10):2273–2281. doi:10.1021/ac000615e

    Article  CAS  Google Scholar 

  188. Bratov A, Abramova N, Ipatov A (2010) Recent trends in potentiometric sensor arrays–a review. Anal Chim Acta 678(2):149–159. doi:10.1016/j.aca.2010.08.035

    Article  CAS  Google Scholar 

  189. Mallon CT, Zuliani C, Keyes TE, Forster RJ (2010) Single nanocavity electrodes: fabrication, electrochemical and photonic properties. Chem Commun 46(38):7109–7111

    Article  CAS  Google Scholar 

  190. Zuliani C, Walsh DA, Keyes TE, Forster RJ (2010) Formation and growth of oxide layers at platinum and gold nano- and microelectrodes. Anal Chem 82(17):7135–7140. doi:10.1021/ac101728a

    Article  CAS  Google Scholar 

  191. Fan F-RF, Fernandez J, Liu B, Mauzeroll J, Zoski CG (2007) Ume fabrication/characterization basics. In: Zoski CG (ed) Handbook of electrochemistry. Elsevier, Amsterdam, pp 189–260

    Chapter  Google Scholar 

  192. Hartnett M, Diamond D (1997) Potentiometric nonlinear multivariate calibration with genetic algorithm and simplex optimization. Anal Chem 69(10):1909–1918. doi:10.1021/ac9604898

    Article  CAS  Google Scholar 

  193. Scheller FW, Wollenberger U (2002) Enzyme electrodes. In: Bard AJ, Wilson GS, Stratmann M (eds) Encyclopedia of electrochemistry, bioelectrochemistry, vol 9. Wiley-VCH, Weinheim, pp 431–459

    Google Scholar 

  194. Namour P, Lepot M, Jaffrezic-Renault N (2010) Recent trends in monitoring of European water framework directive priority substances using micro-sensors: a 2007–2009 review. Sensors 10(9):7947–7978

    Article  Google Scholar 

  195. Amine A, Mohammadi H (2007) Chapter 14: electrochemical biosensors for heavy metals based on enzyme inhibition. In: Alegret S, Merkoçi A (eds) Comprehensive analytical chemistry, vol 49. Elsevier, Amsterdam, pp 299–310

    Google Scholar 

  196. Badihi-Mossberg M, Buchner V, Rishpon J (2007) Electrochemical biosensors for pollutants in the environment. Electroanalysis 19(19–20):2015–2028. doi:10.1002/elan.200703946

    Article  CAS  Google Scholar 

  197. Shi M, Xu J, Zhang S, Liu B, Kong J (2006) A mediator-free screen-printed amperometric biosensor for screening of organophosphorus pesticides with flow-injection analysis (FIA) system. Talanta 68(4):1089–1095. doi:10.1016/j.talanta.2005.07.007

    Article  CAS  Google Scholar 

  198. Cosnier S, Holzinger M (2010) Biosensors based on electropolymerized films. In: Cosnier S, Karyakin A (eds) Electropolymerization. Concepts, materials and applications. Wiley-VCH, Weinheim, pp 189–214

    Chapter  Google Scholar 

  199. Yehezkeli O, Tel-Vered R, Raichlin S, Willner I (2011) Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS Nano 5(3):2385–2391. doi:10.1021/nn200313t

    Article  CAS  Google Scholar 

  200. Ricci F, Moscone D, Palleschi G (2007) Chapter 24: mediated enzyme screen-printed electrode probes for clinical, environmental and food analysis. In: Alegret S, Merkoçi A (eds) Comprehensive analytical chemistry, vol 49. Elsevier, Amsterdam, pp 559–584

    Google Scholar 

  201. Wang J, Tangkuaram T, Loyprasert S, Vazquez-Alvarez T, Veerasai W, Kanatharana P, Thavarungkul P (2007) Electrocatalytic detection of insulin at ruox/carbon nanotube-modified carbon electrodes. Anal Chim Acta 581(1):1–6. doi:10.1016/j.aca.2006.07.084

    Article  CAS  Google Scholar 

  202. Willner B, Katz E, Willner I (2006) Electrical contacting of redox proteins by nanotechnological means. Curr Opin Biotechnol 17(6):589–596. doi:10.1016/j.copbio.2006.10.008

    Article  CAS  Google Scholar 

  203. Shiku H, Nagamine K, Kaya T, Yasukawa T, Matsue T (2008) Whole-cell biosensors. In: Bartlett PN (ed) Bioelectrochemistry: fundamentals, experimental techniques and applications. Wiley, Chichester, pp 249–266

    Google Scholar 

  204. Whitcombe MJ, Lakshmi D (2010) Imprited polymers. In: Cosnier S, Karyakin A (eds) Electropolymerization. Concepts, materials and applications. Wiley-VCH, Weiheim, pp 133–151

    Chapter  Google Scholar 

  205. Kröger S, Piletsky S, Turner APF (2002) Biosensors for marine pollution research, monitoring and control. Mar Pollut Bull 45(1–12):24–34. doi:10.1016/s0025-326x(01)00309-5

    Article  Google Scholar 

  206. Sequeira M, Bowden M, Minogue E, Diamond D (2002) Towards autonomous environmental monitoring systems. Talanta 56(2):355

    Article  CAS  Google Scholar 

  207. Prien R (2007) Technologies for new in situ chemical sensors. In: OCEANS 2007 – Europe, 2007, p 1

    Google Scholar 

  208. Prien RD (2007) The future of chemical in situ sensors. Mar Chem 107(3, SI):422–432

    Article  CAS  Google Scholar 

  209. Daly KL (2000) Meeting explores sensor technology for remote, interactive aquatic experiments. EOS Transactions 81:580

    Article  Google Scholar 

  210. Glasgow HB, Burkholder JM, Reed RE, Lewitus AJ, Kleinman JE (2004) Real-time remote monitoring of water quality: a review of current applications, and advancements in sensor, telemetry, and computing technologies. J Exp Mar Biol Ecol 300(1–2):409

    Article  Google Scholar 

  211. Murray RW (2010) Challenges in environmental analytical chemistry. Anal Chem 82(5):1569

    Article  CAS  Google Scholar 

  212. Anastasi G, Conti M, Francesco MD, Passarella A (2009) Energy conservation in wireless sensor networks: a survey. Ad Hoc Networks 7(3):537

    Article  Google Scholar 

  213. Chong CY, Kumar SP (2003) Sensor networks: evolution, opportunities, and challenges. Proceedings of the IEEE 91(8):1247–1256

    Article  Google Scholar 

  214. Baronti P, Pillai P, Chook VWC, Chessa S, Gotta A, Hu YF (2007) Wireless sensor networks: a survey on the state of the art and the 802.15.4 and zigbee standards. Comput Commun 30(7):1655

    Article  Google Scholar 

  215. Daly KL, Byrne RH, Dickson AG, Gallager SM, Perry MJ, Tivey MK (2004) Chemical and biological sensors for time-series research: current status and new directions. Mar Technol Soc J 38(2):121–143

    Article  Google Scholar 

  216. Benito-Lopez F, Byrne R, Răduţă AM, Vrana NE, McGuinness G, Diamond D (2009) Ionogel-based light-actuated valves for controlling liquid flow in micro-fluidic manifolds. Lab Chip 10(2):195–201

    Article  CAS  Google Scholar 

  217. Ramirez-Garcia S, Diamond D (2007) Internet-scale sensing: are biomimetic approaches the answer? J Intell Mater Syst Struct 18(2):159

    Article  Google Scholar 

  218. Ramirez-Garcia S, Diamond D (2007) Biomimetic, low power pumps based on soft actuators. Sens Actuators A Phys 135(1):229–235

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support for this research from Science Foundation Ireland through the CLARITY Centre (grant code 07/CE/I1147), Enterprise Ireland (grant codes IP/2008/544 and CFTD/08/111) and the Irish Environmental Protection Agency (grant code 2010-ET-MS-10). We also acknowledge support from Episensor Ltd. in project IP/2008/544.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dermot Diamond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diamond, D., Collins, F., Cleary, J., Zuliani, C., Fay, C. (2012). Distributed Environmental Monitoring. In: Filippini, D. (eds) Autonomous Sensor Networks. Springer Series on Chemical Sensors and Biosensors, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_33

Download citation

Publish with us

Policies and ethics