Skip to main content

Chromium Titanium Oxide-Based Ammonia Sensors

  • Chapter
  • First Online:
Solid State Gas Sensors - Industrial Application

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 11))

Abstract

Chromium titanium oxide (Cr2–xTixO3+z, CTO) is a solid solution with the corundum crystal structure of the pure chromium oxide if x is in the range of 0.01–0.45. When heated to temperatures above 300°C, CTO shows a very strong and fast resistivity response to the presence of ammonia in air. The conductivity of CTO is primarily determined by chromium imperfections. In gas measurements, CTO shows a p-type semiconductor behavior. At even higher temperatures (>400°C), CTO is an excellent material for ammonia (NH3) detection with a reduced cross sensitivity to humidity. This has been the key to the successful development of ammonia sensors based on CTO.

We investigated CTO as a sensitive material for NH3 sensors operating at room and slightly elevated temperatures. It is based on the change of work function of Cr1.8Ti0.2O3 upon gas exposure. CTO exhibits fast response and relaxation, no baseline drift induced by exposure and little influence of changing ambient humidity. The cross sensitivity to other gases is low, in particular to NO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Appl M (2006) Ammonia. In: Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, doi: 10.1002/14356007.a02_143.pub2

  2. Kalich J (1980) Harmful gases in the piggery air and its influence on the fattening performance of pigs. J Tierzüchter 32(9):386–388

    Google Scholar 

  3. Gieshoff J, Pfeifer M, Schafer-Sindlinger A, Spurk P, Garr G, Leprince T (2001) Advanced urea SCR catalysts for automotive applications. Society of Automotive Engineers, http://www.sae.org/technical/papers/2001-01-0514

  4. Mayo N, Harth R, Mor U et al (1995) Electrochemical response to H2, O2, CO2 and NH3 of a solid-state cell based on a cation- or anion-exchange membrane serving as a polymer electrolyte. Anal Chim Acta 310:139–144

    Article  CAS  Google Scholar 

  5. Jessel W (2001) Gase – Dämpfe – Gasmesstechnik. Dräger Safety AG, Lübeck

    Google Scholar 

  6. Galdikas A, Mironas A, Strazdiene V, Setkus A et al (2000) Room-temperature-functioning ammonia sensor based on solid-state CuxS films. Sens Actuators B 67:76–83

    Article  CAS  Google Scholar 

  7. Sen S, Muthe KP, Joshi N, Gadkari SC et al (2004) Room temperature operating ammonia sensor based on tellurium thin films. Sens Actuators B 98:154–159

    Article  CAS  Google Scholar 

  8. Connolly EJ, Timmer B, Pham HTM, Groeneweg J (2005) A porous SiC ammonia sensor. Sens Actuators B 109:44–46

    Article  CAS  Google Scholar 

  9. Moos R, Müller R, Plog C, Knezevic A et al (2002) Selective ammonia exhaust gas sensor for automotive applications. Sens Actuators B 83:181–189

    Article  CAS  Google Scholar 

  10. Franke ME, Simon U, Moos R, Knezevic A et al (2003) Development and working principle of an ammonia gas sensor based on a refined model for solvate supported proton transport in zeolites. Phys Chem Chem Phys 5:5191–5195

    Article  Google Scholar 

  11. Bidan G (1992) Electroconducting conjugated polymers: new sensitive matrices to build up chemical or electrochemical sensors: a review. Sens Actuators B 6:45–56

    Article  CAS  Google Scholar 

  12. Krutovertsev S, Sorokin S, Zorin A, Letuchy Y, Antonova O (1992) Polymer film based sensor for ammonia detection. Sens Actuators B 7:492–497

    Article  CAS  Google Scholar 

  13. Cai QY, Jain MK, Grimes CA (2001) A wireless, remote query ammonia sensor. Sens Actuators B 77:614–619

    Article  CAS  Google Scholar 

  14. Lähdesmäki I, Lewenstam A, Ivaska A (1996) A polypyrrole-based amperometric ammonia sensor. Talanta 43:125–134

    Article  Google Scholar 

  15. Lähdesmäki I, Kubiak WW, Lewenstam A, Ivaska A (2000) Interference in a polypyrrole-based aperometric ammonia sensor. Talanta 52:269–275

    Article  Google Scholar 

  16. Hirata M, Sun L (1994) Characteristics of an organic semiconductor polyaniline film as a sensor for NH3 gas. Sens Actuators A 40:159–163

    Article  CAS  Google Scholar 

  17. Kukla AL, Shirshov YM, Piletsky SA (1996) Ammonia sensors based on polyaniline films. Sens Actuators B 37:135–140

    Article  CAS  Google Scholar 

  18. Chabuksvar VV, Pethkar S, Athawale AA (2001) Acrylic acid doped polyaniline as an ammonia sensor. Sens Actuators B 77:657–663

    Article  Google Scholar 

  19. Osakai T, Kakutani T, Senda M (1987) A novel amperometric ammonia sensor. Anal Sci 3:521–526

    Article  CAS  Google Scholar 

  20. Trinkel M, Trettnak W, Reininger F, Benes R et al (1996) Study of the performance of an optochemical sensor for ammonia. Anal Chem Acta 320:235–243

    Article  CAS  Google Scholar 

  21. Klein R, Voges E (1993) Integrated-optic ammonia sensor. Sens Actuators B 11:121–125

    Article  Google Scholar 

  22. Yimit A, Itoh K, Murabayashi M (2003) Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor. Sens Actuators B 88:239–245

    Article  CAS  Google Scholar 

  23. Arnold MA, Ostler TJ (1986) Fiber optic ammonia gas sensing probe. Anal Chem 58:1137–1140

    Article  CAS  Google Scholar 

  24. Cao W, Duan Y (2005) Optical fiber-based evanescent ammonia sensor. Sens Actuators 110:252–259

    Article  CAS  Google Scholar 

  25. Capteur Sensors & Analysers Ltd (2000) NH3 sensor data sheets

    Google Scholar 

  26. Moseley PT, Williams DE (1990) A selective ammonia sensor. Sens Actuators B 1:113–115

    Google Scholar 

  27. Williams D (1999) Semiconducting oxides as gas-sensitive resistors. Sens Actuators B Chem 57(1–2):1–16

    Article  CAS  Google Scholar 

  28. Atkinson A, Nartowski AM (2003) Sol–gel synthesis of sub-micron titanium-doped chromia powders for gas sensing. J Sol–Gel Sci Technol 26:793–797

    Article  Google Scholar 

  29. Huo L, Zhao H, Gao S, Pokhrel S (2007) Sol–gel derived polycrystalline CTO thick films for alcohols sensing application. Sens Actuators B 120:560–567

    Article  Google Scholar 

  30. Parkin I, Williams D, Chabanis G (2001) Microspheres of the gas sensor material Cr2-xTixO3 prepared by the sol emulsion gel route. J Mater Chem 11:1651–1656

    Article  Google Scholar 

  31. Gnanasekar KI, Prabhu E, Gnanasekaran T, Periaswami G, Jayaraman V (1999) Preparation and characterisation of Cr2-xTixO3 and its sensor properties. Sens Actuators B 55:175–179

    Article  Google Scholar 

  32. Gmelin (1922) Handbuch der Chemie, vol 33, Chrom p 32 published since 1922

    Google Scholar 

  33. Brydson R, McBride SP (2004) Analytical transmission electron microscopy and surface spectroscopy of ceramics: the microstructural evolution in titanium-doped chromia polycrystals as a function of sintering conditions. J Mater Sci 39:6723–6734

    Article  Google Scholar 

  34. Williams DE, Smith P, Pratt K, Slater B, Catlow CRA, Stoneham AM, Niemeyer D (2002) Experimental and computational study of the gas-sensor behavior an surface chemistry of the solid-solution Cr2-xTixO3 (x < 0.5). J Mater Chem 12:667–675

    Article  Google Scholar 

  35. Magdassi S (2010) The Chemistry of inkjet inks. World Scientific, Singapore, ISBN-13 978-981-281-821-8

    Google Scholar 

  36. Peter C, Kneer J, Wöllenstein J (2011) Inkjet Printing of Titanium Doped Chromium Oxide for Gas Sensing Application. Sensor Letters 9(2):807–811

    Article  CAS  Google Scholar 

  37. Shaw GA, Parkin IP, Williams DE (2003) Atmospheric pressure chemical vapour deposition of Cr2-xTixO3 (CTO) thin films (< 3 μm) on to gas sensing properties. J Mater Chem 13:2957–2967

    Article  CAS  Google Scholar 

  38. Wöllenstein J, Plescher G, Kühner G, Böttner H, Niemeyer D, Williams DE (2002) Preparation, morphology, and gas-sensing behavior of Cr2-xTixO3+z thin films on standard silicon wafer. IEEE Sens J 2:403–408

    Article  Google Scholar 

  39. Besocke K, Berger S (1976) Piezoelectric driven Kelvin probe for contact potential measurements. Rev Sci Instrum 47(7):840–842

    Article  CAS  Google Scholar 

  40. Eisele I, Flietner B, Doll T, Lechner J, Leu M (1994) Reliable hybrid GasFETs for work-function measurements with arbitrary materials. Sens Actuators B 22:1994

    Google Scholar 

  41. Burgmair M, Eisele I, Doll T (2001) Low power gas detection with FET sensors. Sens Actuators B 78:19–25

    Article  Google Scholar 

  42. Burgmair M, Wöllenstein J, Böttner H, Karthigeyan A, Anothainart K, Eisele I (2002) Ti-substituted chromium oxide in work function type sensors: ammonia detection at room temperature with low humidity cross sensitivity. not published in a journal, can be found at http://forschung.unibw.de/berichte/2002/7ut0fvd1htxsoquwk7yl5hkzsvu8aa.pdf

  43. Ostrick B, Pohle R, Fleischer M, Meixner H (2000) TiN in work function type sensors: a stable ammonia sensitive material for room temperature operation with low humidity cross sensitivity. Sens Actuators B 68(1–3):234–239

    Article  CAS  Google Scholar 

  44. Gupta R, Gergintschew Z, Schipanski D, Vyas P (1999) New gas sensing properties of high TC cuprates. Sens Actuators B 56:65–72

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partly funded by the European Commission (Glassgas project) by the US National Science Foundation (NSF, DMR-9701699) and by the German BMBF (MISSY-project). The authors wish to thank Dr. M. Burgmair and Prof. Dr. I. Eisle, Universität der Bundeswehr München for the Kelvin probe and HSGFET measurements. We also like to thank very much Dr. Graham A. Shaw and Dr. Peter Smith, University College London for the support of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wöllenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmitt, K., Peter, C., Wöllenstein, J. (2011). Chromium Titanium Oxide-Based Ammonia Sensors. In: Fleischer, M., Lehmann, M. (eds) Solid State Gas Sensors - Industrial Application. Springer Series on Chemical Sensors and Biosensors, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2011_8

Download citation

Publish with us

Policies and ethics