Skip to main content

Proteasomal degradation of misfolded proteins

  • Chapter
  • First Online:
Chaperones

Part of the book series: Topics in Current Genetics ((TCG,volume 16))

  • 159 Accesses

Abstract

One of the most important functions of cellular quality control systems is to maintain structural fidelity of proteins. Molecular chaperones prevent aggregation and assist folding of newly synthesized proteins in the cytosol and the ER. Furthermore, in concert with ubiquitin-ligases, chaperones detect misfolded or damaged proteins and target them for degradation by the ubiquitin-proteasome system. Some U-box ligases link recognition of aberrant cytosolic proteins to degradation. In degradation of malfolded secretory proteins from the ER, recognition by chaperones is separated from the ubiquitin-proteasome system by the ER-membrane. Therefore, dislocation precedes ubiquitination mediated by two RING-finger ligases in the ER membrane. Proteins are marked for degradation by the attachment of poly-ubiquitin chains. Poly-ubiquitinated proteins are subsequently recognized by a Cdc48p/p97 complex and delivered to the proteasome where they are degraded. Malfunction of protein degradation by the ubiquitin-proteasome system leads to the generation of severe human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Alberti S, Demand J, Esser C, Emmerich N, Schild H, Hohfeld J (2002) Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem 277:45920-45927

    PubMed  CAS  Google Scholar 

  • 2. Alberti S, Bohse K, Arndt V, Schmitz A, Hohfeld J (2004) The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 15:4003-4010

    PubMed  CAS  Google Scholar 

  • 3. Andreeva L, Heads R, Green CJ (1999) Cyclophilins and their possible role in the stress response. Int J Exp Pathol 80:305-315

    PubMed  CAS  Google Scholar 

  • 4. Aravind L, Koonin EV (2000) The U box is a modified RING finger - a common domain in ubiquitination. Curr Biol 10:R132-R134

    PubMed  CAS  Google Scholar 

  • 5. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, Patterson C (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535-4545

    PubMed  CAS  Google Scholar 

  • 6. Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367-380

    PubMed  CAS  Google Scholar 

  • 7. Baxter BK, James P, Evans T, Craig EA (1996) SSI1 encodes a novel Hsp70 of the Saccharomyces cerevisiae endoplasmic reticulum. Mol Cell Biol 16:6444-6456

    PubMed  CAS  Google Scholar 

  • 8. Bays NW, Gardner RG, Seelig LP, Joazeiro CA, Hampton RY (2001a) Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat Cell Biol 3:24-29

    PubMed  CAS  Google Scholar 

  • 9. Bays NW, Wilhovsky SK, Goradia A, Hodgkiss-Harlow K, Hampton RY (2001b) HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol Biol Cell 12:4114-4128

    PubMed  CAS  Google Scholar 

  • 10. Berg-Fussman A, Grace ME, Ioannou Y, Grabowski GA (1993) Human acid beta-glucosidase. N-glycosylation site occupancy and the effect of glycosylation on enzymatic activity. J Biol Chem 268:14861-14866

    PubMed  CAS  Google Scholar 

  • 11. Beutler E, Gelbart T, Kuhl W, Zimran A, West C (1992) Mutations in Jewish patients with Gaucher disease. Blood 79:1662-1666

    PubMed  CAS  Google Scholar 

  • 12. Biederer T, Volkwein C, Sommer T (1996) Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway. Embo J 15:2069-2076

    PubMed  CAS  Google Scholar 

  • 13. Biederer T, Volkwein C, Sommer T (1997) Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278:1806-1809

    PubMed  CAS  Google Scholar 

  • 14. Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999) The proteasome. Annu Rev Biophys Biomol Struct 28:295-317

    PubMed  CAS  Google Scholar 

  • 15. Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L (1967) Enzymatic defect in Fabry's disease. Ceramidetrihexosidase deficiency. N Engl J Med 276:1163-1167

    PubMed  CAS  Google Scholar 

  • 16. Braun S, Matuschewski K, Rape M, Thoms S, Jentsch S (2002) Role of the ubiquitin-selective CDC48(UFD1/NPL4 )chaperone (segregase) in ERAD of OLE1 and other substrates. Embo J 21:615-621

    PubMed  CAS  Google Scholar 

  • 17. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351-366

    PubMed  CAS  Google Scholar 

  • 18. Caplan AJ (1999) Hsp90's secrets unfold: new insights from structural and functional studies. Trends Cell Biol 9:262-268

    PubMed  CAS  Google Scholar 

  • 19. Chang A, Cheang S, Espanel X, Sudol M (2000) Rsp5 WW domains interact directly with the carboxyl-terminal domain of RNA polymerase II. J Biol Chem 275:20562-20571

    PubMed  CAS  Google Scholar 

  • 20. Chen L, Madura K (2002) Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol Cell Biol 22:4902-4913

    PubMed  CAS  Google Scholar 

  • 21. Chinkers M (1994) Targeting of a distinctive protein-serine phosphatase to the protein kinase-like domain of the atrial natriuretic peptide receptor. Proc Natl Acad Sci USA 91:11075-11079

    PubMed  CAS  Google Scholar 

  • 22. Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Hohfeld J, Patterson C (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3:93-96

    PubMed  CAS  Google Scholar 

  • 23. Craven RA, Egerton M, Stirling CJ (1996) A novel Hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors. Embo J 15:2640-2650

    PubMed  CAS  Google Scholar 

  • 24. Cyr DM, Lu X, Douglas MG (1992) Regulation of Hsp70 function by a eukaryotic DnaJ homolog. J Biol Chem 267:20927-20931

    PubMed  CAS  Google Scholar 

  • 25. Cyr DM, Hohfeld J, Patterson C (2002) Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27:368-375

    PubMed  CAS  Google Scholar 

  • 26. Dai RM, Chen E, Longo DL, Gorbea CM, Li CC (1998) Involvement of valosin-containing protein, an ATPase Co-purified with IkappaBalpha and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IkappaBalpha. J Biol Chem 273:3562-3573

    PubMed  CAS  Google Scholar 

  • 27. Dai RM, Li CC (2001) Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat Cell Biol 3:740-744

    PubMed  CAS  Google Scholar 

  • 28. Dale MP, Ensley HE, Kern K, Sastry KA, Byers LD (1985) Reversible inhibitors of beta-glucosidase. Biochemistry 24:3530-3539

    PubMed  CAS  Google Scholar 

  • 29. Das AK, Cohen PW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. Embo J 17:1192-1199

    PubMed  CAS  Google Scholar 

  • 30. Deak PM, Wolf DH (2001) Membrane topology and function of Der3/Hrd1p as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation. J Biol Chem 276:10663-10669

    PubMed  CAS  Google Scholar 

  • 31. Deeks ED, Cook JP, Day PJ, Smith DC, Roberts LM, Lord JM (2002) The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry 41:3405-3413

    PubMed  CAS  Google Scholar 

  • 32. Demand J, Alberti S, Patterson C, Hohfeld J (2001) Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol 11:1569-1577

    PubMed  CAS  Google Scholar 

  • 33. Dittmar KD, Pratt WB (1997) Folding of the glucocorticoid receptor by the reconstituted Hsp90-based chaperone machinery. The initial hsp90.p60.hsp70-dependent step is sufficient for creating the steroid binding conformation. J Biol Chem 272:13047-13054

    PubMed  CAS  Google Scholar 

  • 34. Dunnett SB, Bjorklund A (1999) Prospects for new restorative and neuroprotective treatments in Parkinson's disease. Nature 399:A32-39

    PubMed  CAS  Google Scholar 

  • 35. Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882-1888

    PubMed  CAS  Google Scholar 

  • 36. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181-191

    PubMed  CAS  Google Scholar 

  • 37. Elsasser S, Chandler-Militello D, Muller B, Hanna J, Finley D (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem 279:26817-26822

    PubMed  CAS  Google Scholar 

  • 38. Eskelinen EL, Tanaka Y, Saftig P (2003) At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol 13:137-145

    PubMed  CAS  Google Scholar 

  • 39. Fan JQ, Ishii S, Asano N, Suzuki Y (1999) Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 5:112-115

    PubMed  CAS  Google Scholar 

  • 40. Fiebiger E, Story C, Ploegh HL, Tortorella D (2002) Visualization of the ER-to-cytosol dislocation reaction of a type I membrane protein. Embo J 21:1041-1053

    PubMed  CAS  Google Scholar 

  • 41. Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346:623-628

    PubMed  CAS  Google Scholar 

  • 42. Freeman BC, Morimoto RI (1996) The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. Embo J 15:2969-2979

    PubMed  CAS  Google Scholar 

  • 43. Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603-647

    PubMed  CAS  Google Scholar 

  • 44. Fu X, Ng C, Feng D, Liang C (2003) Cdc48p is required for the cell cycle commitment point at Start via degradation of the G1-CDK inhibitor Far1p. J Cell Biol 163:21-26

    PubMed  CAS  Google Scholar 

  • 45. Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5:554-565

    PubMed  CAS  Google Scholar 

  • 46. Gardner RG, Swarbrick GM, Bays NW, Cronin SR, Wilhovsky S, Seelig L, Kim C, Hampton RY (2000) Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J Cell Biol 151:69-82

    PubMed  CAS  Google Scholar 

  • 47. Gautschi M, Lilie H, Funfschilling U, Mun A, Ross S, Lithgow T, Rucknagel P, Rospert S (2001) RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc Natl Acad Sci USA 98:3762-3767

    PubMed  CAS  Google Scholar 

  • 48. Gillece P, Luz JM, Lennarz WJ, de La Cruz FJ, Romisch K (1999) Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase. J Cell Biol 147:1443-1456

    PubMed  CAS  Google Scholar 

  • 49. Hamilton TG, Flynn GC (1996) Cer1p, a novel Hsp70-related protein required for posttranslational endoplasmic reticulum translocation in yeast. J Biol Chem 271:30610-30613

    PubMed  CAS  Google Scholar 

  • 50. Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI (2001) U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 276:33111-33120

    PubMed  CAS  Google Scholar 

  • 51. Hatakeyama S, Nakayama KI (2003) U-box proteins as a new family of ubiquitin ligases. Biochem Biophys Res Commun 302:635-645

    PubMed  CAS  Google Scholar 

  • 52. Hatakeyama S, Matsumoto M, Yada M, Nakayama KI (2004) Interaction of U-box-type ubiquitin-protein ligases (E3s) with molecular chaperones. Genes Cells 9:533-548

    PubMed  CAS  Google Scholar 

  • 53. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425-479

    PubMed  CAS  Google Scholar 

  • 54. Hill K, Cooper AA (2000) Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system. Embo J 19:550-561

    PubMed  CAS  Google Scholar 

  • 55. Hiller MM, Finger A, Schweiger M, Wolf DH (1996) ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273:1725-1728

    PubMed  CAS  Google Scholar 

  • 56. Hundley H, Eisenman H, Walter W, Evans T, Hotokezaka Y, Wiedmann M, Craig E (2002) The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. Proc Natl Acad Sci USA 99:4203-4208

    PubMed  CAS  Google Scholar 

  • 57. Huppa JB, Ploegh HL (1998) The eS-Sence of -SH in the ER. Cell 92:145-148

    PubMed  CAS  Google Scholar 

  • 58. Huyer G, Piluek WF, Fansler Z, Kreft SG, Hochstrasser M, Brodsky JL, Michaelis S (2004) Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein. J Biol Chem 279:38369-38378

    PubMed  CAS  Google Scholar 

  • 59. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105:891-902

    PubMed  CAS  Google Scholar 

  • 60. Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, Nakayama KI, Takahashi R (2002) CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol Cell 10:55-67

    PubMed  CAS  Google Scholar 

  • 61. Jakob CA, Bodmer D, Spirig U, Battig P, Marcil A, Dignard D, Bergeron JJ, Thomas DY, Aebi M (2001) Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep 2:423-430

    PubMed  CAS  Google Scholar 

  • 62. Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D, Wolf DH, Sommer T (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4:134-139

    PubMed  CAS  Google Scholar 

  • 63. Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:129-135

    PubMed  CAS  Google Scholar 

  • 64. Journet A, Chapel A, Kieffer S, Roux F, Garin J (2002) Proteomic analysis of human lysosomes: application to monocytic and breast cancer cells. Proteomics 2:1026-1040

    PubMed  CAS  Google Scholar 

  • 65. Kabani M, Beckerich JM, Gaillardin C (2000) Sls1p stimulates Sec63p-mediated activation of Kar2p in a conformation-dependent manner in the yeast endoplasmic reticulum. Mol Cell Biol 20:6923-6934

    PubMed  CAS  Google Scholar 

  • 66. Kaneko C, Hatakeyama S, Matsumoto M, Yada M, Nakayama K, Nakayama KI (2003) Characterization of the mouse gene for the U-box-type ubiquitin ligase UFD2a. Biochem Biophys Res Commun 300:297-304

    PubMed  CAS  Google Scholar 

  • 67. Kanelis V, Rotin D, Forman-Kay JD (2001) Solution structure of a Nedd4 WW domain-ENaC peptide complex. Nat Struct Biol 8:407-412

    PubMed  CAS  Google Scholar 

  • 68. Kasanov J, Pirozzi G, Uveges AJ, Kay BK (2001) Characterizing Class I WW domains defines key specificity determinants and generates mutant domains with novel specificities. Chem Biol 8:231-241

    PubMed  CAS  Google Scholar 

  • 69. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605-608

    PubMed  CAS  Google Scholar 

  • 70. Knop M, Finger A, Braun T, Hellmuth K, Wolf DH (1996) Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. Embo J 15:753-763

    PubMed  CAS  Google Scholar 

  • 71. Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635-644

    PubMed  CAS  Google Scholar 

  • 72. Kondo H, Rabouille C, Newman R, Levine TP, Pappin D, Freemont P, Warren G (1997) p47 is a cofactor for p97-mediated membrane fusion. Nature 388:75-78

    PubMed  CAS  Google Scholar 

  • 73. Lai BT, Chin NW, Stanek AE, Keh W, Lanks KW (1984) Quantitation and intracellular localization of the 85K heat shock protein by using monoclonal and polyclonal antibodies. Mol Cell Biol 4:2802-2810

    PubMed  CAS  Google Scholar 

  • 74. Lilley BN, Ploegh HL (2004) A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429:834-840

    PubMed  CAS  Google Scholar 

  • 75. Lin H, Sugimoto Y, Ohsaki Y, Ninomiya H, Oka A, Taniguchi M, Ida H, Eto Y, Ogawa S, Matsuzaki Y, Sawa M, Inoue T, Higaki K, Nanba E, Ohno K, Suzuki Y (2004) N-octyl-beta-valienamine up-regulates activity of F213I mutant beta-glucosidase in cultured cells: a potential chemical chaperone therapy for Gaucher disease. Biochim Biophys Acta 1689:219-228

    PubMed  CAS  Google Scholar 

  • 76. Lu Z, Cyr DM (1998) Protein folding activity of Hsp70 is modified differentially by the hsp40 co-chaperones Sis1 and Ydj1. J Biol Chem 273:27824-27830

    PubMed  CAS  Google Scholar 

  • 77. Luders J, Demand J, Hohfeld J (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275:4613-4617

    PubMed  CAS  Google Scholar 

  • 78. Mayer MP, Schroder H, Rudiger S, Paal K, Laufen T, Bukau B (2000) Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat Struct Biol 7:586-593

    PubMed  CAS  Google Scholar 

  • 79. Mayer TU, Braun T, Jentsch S (1998) Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. Embo J 17:3251-3257

    PubMed  CAS  Google Scholar 

  • 80. McCarty JS, Buchberger A, Reinstein J, Bukau B (1995) The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol 249:126-137

    PubMed  CAS  Google Scholar 

  • 81. Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3:100-105

    PubMed  CAS  Google Scholar 

  • 82. Medicherla B, Kostova Z, Schaefer A, Wolf DH (2004) A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation. EMBO Rep 5:692-697

    PubMed  CAS  Google Scholar 

  • 83. Meyer HH, Shorter JG, Seemann J, Pappin D, Warren G (2000) A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. Embo J 19:2181-2192

    PubMed  CAS  Google Scholar 

  • 84. Meyer HH, Wang Y, Warren G (2002) Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. Embo J 21:5645-5652

    PubMed  CAS  Google Scholar 

  • 85. Minami M, Nakamura M, Emori Y, Minami Y (2001) Both the N- and C-terminal chaperone sites of Hsp90 participate in protein refolding. Eur J Biochem 268:2520-2524

    PubMed  CAS  Google Scholar 

  • 86. Misselwitz B, Staeck O, Rapoport TA (1998) J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol Cell 2:593-603

    PubMed  CAS  Google Scholar 

  • 87. Molinari M, Helenius A (1999) Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells. Nature 402:90-93

    PubMed  CAS  Google Scholar 

  • 88. Molinari M, Calanca V, Galli C, Lucca P, Paganetti P (2003) Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299:1397-1400

    PubMed  CAS  Google Scholar 

  • 89. Morello JP, Salahpour A, Laperriere A, Bernier V, Arthus MF, Lonergan M, Petaja-Repo U, Angers S, Morin D, Bichet DG, Bouvier M (2000) Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest 105:887-895

    PubMed  CAS  Google Scholar 

  • 90. Murata S, Minami Y, Minami M, Chiba T, Tanaka K (2001) CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2:1133-1138

    PubMed  CAS  Google Scholar 

  • 91. Nakatsukasa K, Nishikawa S, Hosokawa N, Nagata K, Endo T (2001) Mnl1p, an alpha -mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J Biol Chem 276:8635-8638

    PubMed  CAS  Google Scholar 

  • 92. Nikolay R, Wiederkehr T, Rist W, Kramer G, Mayer MP, Bukau B (2004) Dimerization of the human E3 ligase CHIP via a coiled-coil domain is essential for its activity. J Biol Chem 279:2673-2678

    PubMed  CAS  Google Scholar 

  • 93. Nishikawa SI, Fewell SW, Kato Y, Brodsky JL, Endo T (2001) Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153:1061-1070

    PubMed  CAS  Google Scholar 

  • 94. Norgaard P, Westphal V, Tachibana C, Alsoe L, Holst B, Winther JR (2001) Functional differences in yeast protein disulfide isomerases. J Cell Biol 152:553-562

    PubMed  CAS  Google Scholar 

  • 95. Oda Y, Hosokawa N, Wada I, Nagata K (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299:1394-1397

    PubMed  CAS  Google Scholar 

  • 96. Panzner S, Dreier L, Hartmann E, Kostka S, Rapoport TA (1995) Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81:561-570

    PubMed  CAS  Google Scholar 

  • 97. Patterson C (2002) A new gun in town: the U box is a ubiquitin ligase domain. Sci STKE 2002:PE4

    PubMed  Google Scholar 

  • 98. Pellecchia M, Szyperski T, Wall D, Georgopoulos C, Wuthrich K (1996) NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J Mol Biol 260:236-250

    PubMed  CAS  Google Scholar 

  • 99. Perdew GH, Whitelaw ML (1991) Evidence that the 90-kDa heat shock protein (HSP90) exists in cytosol in heteromeric complexes containing HSP70 and three other proteins with Mr of 63,000, 56,000, and 50,000. J Biol Chem 266:6708-6713

    PubMed  CAS  Google Scholar 

  • 100. Petaja-Repo UE, Hogue M, Bhalla S, Laperriere A, Morello JP, Bouvier M (2002) Ligands act as pharmacological chaperones and increase the efficiency of delta opioid receptor maturation. Embo J 21:1628-1637

    PubMed  CAS  Google Scholar 

  • 101. Peters JM (1999) Subunits and substrates of the anaphase-promoting complex. Exp Cell Res 248:339-349

    PubMed  CAS  Google Scholar 

  • 102. Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59:1640-1648

    PubMed  CAS  Google Scholar 

  • 103. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503-533

    PubMed  CAS  Google Scholar 

  • 104. Pilon M, Schekman R, Romisch K (1997) Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. Embo J 16:4540-4548

    PubMed  CAS  Google Scholar 

  • 105. Plemper RK, Bohmler S, Bordallo J, Sommer T, Wolf DH (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388:891-895

    PubMed  CAS  Google Scholar 

  • 106. Pollanen MS, Dickson DW, Bergeron C (1993) Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 52:183-191

    PubMed  CAS  Google Scholar 

  • 107. Ponting CP (2000) Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction. Biochem J 351 Pt 2:527-535

    Google Scholar 

  • 108. Pringa E, Martinez-Noel G, Muller U, Harbers K (2001) Interaction of the ring finger-related U-box motif of a nuclear dot protein with ubiquitin-conjugating enzymes. J Biol Chem 276:19617-19623

    PubMed  CAS  Google Scholar 

  • 109. Rabinovich E, Kerem A, Frohlich KU, Diamant N, Bar-Nun S (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22:626-634

    PubMed  CAS  Google Scholar 

  • 110. Rao H, Sastry A (2002) Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23. J Biol Chem 277:11691-11695

    PubMed  CAS  Google Scholar 

  • 111. Rape M, Hoppe T, Gorr I, Kalocay M, Richly H, Jentsch S (2001) Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107:667-677

    PubMed  CAS  Google Scholar 

  • 112. Rouiller I, Butel VM, Latterich M, Milligan RA, Wilson-Kubalek EM (2000) A major conformational change in p97 AAA ATPase upon ATP binding. Mol Cell 6:1485-1490

    PubMed  CAS  Google Scholar 

  • 113. Rudiger S, Schneider-Mergener J, Bukau B (2001) Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. Embo J 20:1042-1050

    PubMed  CAS  Google Scholar 

  • 114. Saris N, Makarow M (1998) Transient ER retention as stress response: conformational repair of heat-damaged proteins to secretion-competent structures. J Cell Sci 111 (Pt 11):1575-1582

    PubMed  CAS  Google Scholar 

  • 115. Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 271:635-638

    PubMed  CAS  Google Scholar 

  • 116. Sawkar AR, Cheng WC, Beutler E, Wong CH, Balch WE, Kelly JW (2002) Chemical chaperones increase the cellular activity of N370S beta -glucosidase: a therapeutic strategy for Gaucher disease. Proc Natl Acad Sci USA 99:15428-15433

    PubMed  CAS  Google Scholar 

  • 117. Schauber C, Chen L, Tongaonkar P, Vega I, Lambertson D, Potts W, Madura K (1998) Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391:715-718

    PubMed  CAS  Google Scholar 

  • 118. Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199-210

    PubMed  CAS  Google Scholar 

  • 119. Schiffmann R, Brady RO (2002) New prospects for the treatment of lysosomal storage diseases. Drugs 62:733-742

    PubMed  CAS  Google Scholar 

  • 120. Shearer AG, Hampton RY (2004) Structural control of endoplasmic reticulum-associated degradation: effect of chemical chaperones on 3-hydroxy-3-methylglutaryl-CoA reductase. J Biol Chem 279:188-196

    PubMed  CAS  Google Scholar 

  • 121. Sikorski RS, Boguski MS, Goebl M, Hieter P (1990) A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60:307-317

    PubMed  CAS  Google Scholar 

  • 122. Silverstein AM, Galigniana MD, Chen MS, Owens-Grillo JK, Chinkers M, Pratt WB (1997) Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin. J Biol Chem 272:16224-16230

    PubMed  CAS  Google Scholar 

  • 123. Sommer T, Jentsch S (1993) A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365:176-179

    PubMed  CAS  Google Scholar 

  • 124. Spear ED, Ng DT (2003) Stress tolerance of misfolded carboxypeptidase Y requires maintenance of protein trafficking and degradative pathways. Mol Biol Cell 14:2756-2767

    PubMed  CAS  Google Scholar 

  • 125. Stevens FJ, Argon Y (1999) Protein folding in the ER. Semin Cell Dev Biol 10:443-454

    PubMed  CAS  Google Scholar 

  • 126. Suhan ML, Hovde CJ (1998) Disruption of an internal membrane-spanning region in Shiga toxin 1 reduces cytotoxicity. Infect Immun 66:5252-5259

    PubMed  CAS  Google Scholar 

  • 127. Swanson R, Locher M, Hochstrasser M (2001) A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. Genes Dev 15:2660-2674

    PubMed  CAS  Google Scholar 

  • 128. Tatzelt J, Prusiner SB, Welch WJ (1996) Chemical chaperones interfere with the formation of scrapie prion protein. Embo J 15:6363-6373

    PubMed  CAS  Google Scholar 

  • 129. Taxis C, Hitt R, Park SH, Deak PM, Kostova Z, Wolf DH (2003) Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J Biol Chem 278:35903-35913

    PubMed  CAS  Google Scholar 

  • 130. Theyssen H, Schuster HP, Packschies L, Bukau B, Reinstein J (1996) The second step of ATP binding to DnaK induces peptide release. J Mol Biol 263:657-670

    PubMed  CAS  Google Scholar 

  • 131. Tirosh B, Furman MH, Tortorella D, Ploegh HL (2003) Protein unfolding is not a prerequisite for endoplasmic reticulum-to-cytosol dislocation. J Biol Chem 278:6664-6672

    PubMed  CAS  Google Scholar 

  • 132. Tsai B, Rodighiero C, Lencer WI, Rapoport TA (2001) Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104:937-948

    PubMed  CAS  Google Scholar 

  • 133. Tsai B, Ye Y, Rapoport TA (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol 3:246-255

    PubMed  CAS  Google Scholar 

  • 134. Tyson JR, Stirling CJ (2000) LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. Embo J 19:6440-6452

    PubMed  CAS  Google Scholar 

  • 135. Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427:36-44

    Google Scholar 

  • 136. Vashist S, Ng DT (2004) Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J Cell Biol 165:41-52

    PubMed  CAS  Google Scholar 

  • 137. Verma R, Chen S, Feldman R, Schieltz D, Yates J, Dohmen J, Deshaies RJ (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 11:3425-3439

    PubMed  CAS  Google Scholar 

  • 138. Vijayraghavan U, Company M, Abelson J (1989) Isolation and characterization of pre-mRNA splicing mutants of Saccharomyces cerevisiae. Genes Dev 3:1206-1216

    PubMed  CAS  Google Scholar 

  • 139. Walter J, Urban J, Volkwein C, Sommer T (2001) Sec61p-independent degradation of the tail-anchored ER membrane protein Ubc6p. Embo J 20:3124-3131

    PubMed  CAS  Google Scholar 

  • 140. Wang BB, Hayenga KJ, Payan DG, Fisher JM (1996) Identification of a nuclear-specific cyclophilin which interacts with the proteinase inhibitor eglin c. Biochem J 314 ( Pt 1):313-319

    PubMed  CAS  Google Scholar 

  • 141. Wang Q, Chang A (1999) Eps1, a novel PDI-related protein involved in ER quality control in yeast. Embo J 18:5972-5982

    PubMed  CAS  Google Scholar 

  • 142. Wang Q, Chang A (2003) Substrate recognition in ER-associated degradation mediated by Eps1, a member of the protein disulfide isomerase family. Embo J 22:3792-3802

    PubMed  CAS  Google Scholar 

  • 143. Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121-127

    PubMed  CAS  Google Scholar 

  • 144. Wegele H, Muschler P, Bunck M, Reinstein J, Buchner J (2003) Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90. J Biol Chem 278:39303-39310

    PubMed  CAS  Google Scholar 

  • 145. Wegele H, Muller L, Buchner J (2004) Hsp70 and Hsp90–a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1-44

    PubMed  CAS  Google Scholar 

  • 146. Werner ED, Brodsky JL, McCracken AA (1996) Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Natl Acad Sci USA 93:13797-13801

    PubMed  CAS  Google Scholar 

  • 147. Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL (1996) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:432-438

    PubMed  CAS  Google Scholar 

  • 148. Wilkinson CR, Seeger M, Hartmann-Petersen R, Stone M, Wallace M, Semple C, Gordon C (2001) Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol 3:939-943

    PubMed  CAS  Google Scholar 

  • 149. Ye Y, Meyer HH, Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652-656

    PubMed  CAS  Google Scholar 

  • 150. Ye Y, Meyer HH, Rapoport TA (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol 162:71-84

    PubMed  CAS  Google Scholar 

  • 151. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841-847

    PubMed  CAS  Google Scholar 

  • 152. Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267-273

    PubMed  CAS  Google Scholar 

  • 153. Zhang X, Shaw A, Bates PA, Newman RH, Gowen B, Orlova E, Gorman MA, Kondo H, Dokurno P, Lally J, Leonard G, Meyer H, van Heel M, Freemont PS (2000a) Structure of the AAA ATPase p97. Mol Cell 6:1473-1484

    PubMed  CAS  Google Scholar 

  • 154. Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM (2000b) Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 97:13354-13359

    PubMed  CAS  Google Scholar 

  • 155. Zhang Y, Nijbroek G, Sullivan ML, McCracken AA, Watkins SC, Michaelis S, Brodsky JL (2001) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol Biol Cell 12:1303-1314

    PubMed  CAS  Google Scholar 

  • 156. Zhong X, Shen Y, Ballar P, Apostolou A, Agami R, Fang S (2004) AAA ATPase p97/VCP interacts with gp78: a ubiquitin ligase for ER-associated degradation. J Biol Chem 279:45676-45684

    PubMed  CAS  Google Scholar 

  • 157. Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606-1614

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ineke Braakman

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Gauss, R., Neuber, O., Sommer, T. Proteasomal degradation of misfolded proteins. In: Braakman, I. (eds) Chaperones. Topics in Current Genetics, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_90

Download citation

Publish with us

Policies and ethics