Skip to main content

Kinetic modelling of the E. coli metabolism

  • Chapter
  • First Online:
Systems Biology

Abstract

We describe a general strategy that enables us to develop kinetic models of large-scale metabolic systems by collecting and using available metabolic and gene regulation experimental data. The approach could be used to explore the local and global regulatory properties of metabolic pathways, and to predict how cell genome modifications can meet specific biotechnological and biomedical criteria. We have successfully applied the strategy for the development and applications of detailed kinetic models of catabolic and anabolic pathways of E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Aulabaugh A, Schloss JV (1990) Oxalyl hydroxamates as reaction-intermediate analogs for ketol-acid reductoisomerase. Biochemistry 29:2824-2830

    Article  PubMed  Google Scholar 

  • 2. Barak Z, Chipman DM, Gollop N (1987) Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria. J Bacteriol 169:3750-3756

    PubMed  Google Scholar 

  • 3. Bar-Ilan A, Balan V, Tittmann K, Golbik R, Vyazmensky M, Hubner G, Barak Z, Chipman DM (2001) Binding and activation of thiamin diphosphate in acetohydroxyacid synthase. Biochemistry 40:11946-11954

    Article  PubMed  Google Scholar 

  • 4. Chassagnole C, Noisommit-Rizzi N, Schmid JW, Klaus Mauch K, Reuss M (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 79:53-73

    Article  Google Scholar 

  • 5. Chunduru SK, Mrachko GT, Calvo KC (1998) Mechanism of ketol acid reductoisomerase. Steady-state analysis and metal ion requirement. Biochemistry 28:486-493

    Article  Google Scholar 

  • 6. Cleland WW The kinetics of enzyme-catalysed reactions with two or more substrates or products. Biochim Biophys Acta 67:104-137

    Google Scholar 

  • 7. Cornish-Bouden A (2001) Fundamentals of enzyme kinetic. Portland Press, Cambridge

    Google Scholar 

  • 8. Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125-130

    Article  PubMed  Google Scholar 

  • 9. Elijah Adams (1955) I-histidinal, a biosynthetic precursor of histidine. J Biol Chem 217:325-344

    PubMed  Google Scholar 

  • 10. Engel S, Vyazmensky M, Barak Z, Chipman DM, Merchuk JC (2000) Determination of the dissociation constant of valine from acetohydroxy acid synthase by equilibrium partition in an aqueous two-phase system. J Chromatogr B 743:225-229

    Google Scholar 

  • 11. Eoyang L, Silverman PM (1984) Purification and subunit composition of acetohydroxyacid synthase I from Escherichia coli K-12. J Bacteriol 157:184-189

    PubMed  Google Scholar 

  • 12. Goryanin I, Hodgman TC, Selkov E (1999) Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15:749-758

    Article  PubMed  Google Scholar 

  • 13. Hall TR, Wallin R, Reinhart GD, Hutson SM (1993) Branched chain amino transferase isoenzymes. Purification and characterization of the rat brain isoenzyme. J Biol Chem 268:3092-3098

    PubMed  Google Scholar 

  • 14. Hill CM, Duggleby RG (1998) Escherichia coli acetohydroxyacid synthase II mutants. Biochem J 335:653-661

    PubMed  Google Scholar 

  • 15. Hill CM, Pang SS, Duggleby RG (1997) Escherichia coli acetohydroxyacid synthase II. Biochem J 327:891-898

    PubMed  Google Scholar 

  • 16. Holms WH (1986) The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr Top Cell Regul 28:69-104

    PubMed  Google Scholar 

  • 17. Inoue K, Kuramitsu S, Aki K, Watanabe Y, Takagi T, Nishigai M, Ikai A, Kagamiyama H (1988) Branched-chain amino acid amino transferase of Escherichia coli: overproduction and properties. J Biochem 104:777-784

    PubMed  Google Scholar 

  • 18. Ivanitzky GR, Krinsky VI, Selkov EE (1978) Mathematical biophysics of the cell. Nauka, Moscow

    Google Scholar 

  • 19. Lee-Peng FC, Hermodson MA, Kohlhaw GB (1979) Transaminase B from Escherichia coli: quaternary structure, amino-terminal sequence, substrate specificity, and absence of a separate valine-a-ketoglutarate activity. J Bacteriol 139(2):339-345

    PubMed  Google Scholar 

  • 20. Limberg G, Klaffke W, Thiem J (1995) Conversion of aldonic acids to their corresponding 2-keto-3-deoxy-analogs by the non-carbohydrate enzyme dihydroxy acid dehydratase (DHAD). Bioorg Med Chem 3:487-494

    Article  PubMed  Google Scholar 

  • 21. Loper J, Adams E (1965) Purification and properties of histidinol dehydrogenase from Salmonella typhimurium. J Biol Chem 240:788-795

    PubMed  Google Scholar 

  • 22. Myers JW (1961) Dihydroxy acid dehydrase: an enzyme involved in the biosynthesis of isoleucine and valine. J Biol Chem 236:1414-1418

    PubMed  Google Scholar 

  • 23. Perna NT, Plunkett G 3rd, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529-533

    Article  PubMed  Google Scholar 

  • 24. Rane MJ, Calvo KC (1997) Reversal of the nucleotide specificity of ketol acid reductoisomerase by site-directed mutagenesis identifies the NADPH Binding Site1. Arch Biochem Biophys 338:83-89

    Article  PubMed  Google Scholar 

  • 25. Selkov E, Basmanova S, Gaasterland T, Goryanin I, Gretchkin Y, Maltsev N, Nenashev V, Overbeek R, Panyushkina E, Pronevitch L, Yunis I (1996) The metabolic pathway collection from EMP: the enzymes and metabolic pathways database. Nucleic Acids Res 24:26-28

    Article  PubMed  Google Scholar 

  • 26. Shomburg I, Chang A, Shomburg D (2002) BRENDA, enzyme data and metabolic information. Nucleic Acids Res 30:47-49

    Article  PubMed  Google Scholar 

  • 27. Umbarger HE (1996) Escherichia coli and Salmonella: cellular and molecular biology: ASM Press, Washington DC:442-458

    Google Scholar 

  • 28. Vyazmensky M, Sella C, Barak Z, Chipman DM (1996) Isolation and characterization of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme. Biochemistry 35:10339-10346

    Article  PubMed  Google Scholar 

  • 29. Wessel PM, Graciet E, Douce R, Dumas R (2000) Evidence for two distinct effector-binding sites in threonine deaminase by site-directed mutagenesis, kinetic, and binding experiments. Biochemistry 39:15136-151143

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lila Alberghina H.V. Westerhoff

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Demin, O.V. et al. Kinetic modelling of the E. coli metabolism. In: Alberghina, L., Westerhoff, H. (eds) Systems Biology. Topics in Current Genetics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_85

Download citation

Publish with us

Policies and ethics