Skip to main content

Control of Cell Cycle by SAPKs in Budding and Fission Yeast

  • Chapter
  • First Online:
Stress-Activated Protein Kinases

Part of the book series: Topics in Current Genetics ((TCG,volume 20))

Abstract

In yeast cells as well as in higher eukaryotic organisms, the response to environmental stress is through the activation of the MAP kinases pathway, which induces the expression of genes involved in maintaining the cellular homeostasis. This pathway is activated after a variety of cellular stimuli and regulates numerous physiological processes, particularly the cell division cycle. Progression through the cell cycle is critically dependent on the presence of environmental growth factors and stress stimuli, and failure to correctly integrate such signals into the cell cycle machinery can lead to accumulation of genetic damage and genomic instability. Here, we considered the molecular mechanism by which cell cycle control is regulated by stress-activated protein kinase (SAPK) signalling pathway in yeast, Saccharomyces cerevisiae and Schizosaccharomyces pombe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alemany V, Sanchez-Piris M, Bachs O, Aligue R (2002) Cmk2, a novel serine/threonine kinase in fission yeast. FEBS Lett 1–3:79–86

    Article  Google Scholar 

  2. Alexander MR, Tyers M, Perret M, Craig BM, Fang KS, Gustin MC (2001) Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress. Mol Biol Cell 1:53–62

    Google Scholar 

  3. Aligue R, Wu L, Russell P (1997) Regulation of Schizosaccharomyces pombe Wee1 Tyrosine Kinase. J Biol Chem 20:13320–13325

    Article  Google Scholar 

  4. Ambrosino C, Nebreda AR (2001) Cell cycle regulation by p38 MAP kinases. Biol Cell 1-2:47–51

    Article  Google Scholar 

  5. Barnouin K, Dubuisson ML, Child ES, Fernandez de Mattos S, Glassford J, Medema RH, Mann DJ, Lam EW (2002) H2O2 induces a transient multi-phase cell cycle arrest in mouse fibroblasts through modulating cyclin D and p21Cip1 expression. J Biol Chem 16:13761–13770

    Article  CAS  Google Scholar 

  6. Belli G, Gari E, Aldea M, Herrero E (2001) Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Mol Microbiol 4:1022–1035

    Article  Google Scholar 

  7. Cid VJ, Shulewitz MJ, McDonald KL, Thorner J (2001) Dynamic localization of the Swe1 regulator Hsl7 during the Saccharomyces cerevisiae cell cycle. Mol Biol Cell 6:1645–1669

    Google Scholar 

  8. Clotet J, Escote X, Adrover MA, Yaakov G, Gari E, Aldea M, de Nadal E, Posas F (2006) Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO J 25:2338–2346

    Article  PubMed  CAS  Google Scholar 

  9. Dahlkvist A, Kanter-Smoler G, Sunnerhagen P (1995) The RCK1 and RCK2 protein kinase genes from Saccharomyces cerevisiae suppress cell cycle checkpoint mutations in Schizosaccharomyces pombe. Mol Gen Genet 3:316–326

    Article  Google Scholar 

  10. de Nadal E, Alepuz PM, Posas F (2002) Dealing with osmostress through MAP kinase activation. EMBO Rep 8:735–740

    Article  CAS  Google Scholar 

  11. de Nadal E, Casadome L, Posas F (2003) Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase. Mol Cell Biol 1:229–237

    Article  CAS  Google Scholar 

  12. Egel R (2005) The molecular biology of Schizosaccharomyces pombe. Springer, Denmark

    Google Scholar 

  13. Escote X, Zapater M, Clotet J, Posas F (2004) Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nat Cell Biol 10:997–1002

    Article  CAS  Google Scholar 

  14. Furnari B, Blasina A, Boddy MN, McGowan CH, Russell P (1999) Cdc25 inhibited in vivo and in vitro by checkpoint kinases Cds1 and Chk1. Mol Biol Cell 4:833–845

    Google Scholar 

  15. Gachet Y, Reyes C, Goldstone S, Tournier S (2006) The fission yeast spindle orientation checkpoint: a model that generates tension? Yeast 13:1015–1029

    Article  CAS  Google Scholar 

  16. Gould KL, Nurse P (1989) Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 6245:39–45

    Article  Google Scholar 

  17. Grandin N, de Almeida A, Charbonneau M (1998) The Cdc14 phosphatase is functionally associated with the Dbf2 protein kinase in Saccharomyces cerevisiae. Mol Gen Genet 1-2:104–116

    Google Scholar 

  18. Harvey SL, Charlet A, Haas W, Gygi SP, Kellogg DR (2005) Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell 3:407–420

    Article  CAS  Google Scholar 

  19. Hayles J, Fisher D, Woollard A, Nurse P (1994) Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2-mitotic B cyclin complex. Cell 5:813–822

    Article  Google Scholar 

  20. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 2:300–372

    Article  CAS  Google Scholar 

  21. Humphrey T, Pearce A (2005) Cell cycle molecules and mechanisms of the budding and fission yeasts. Methods Mol Biol 3–29

    Google Scholar 

  22. Karlsson-Rosenthal C, Millar JB (2006) Cdc25: mechanisms of checkpoint inhibition and recovery. Trends Cell Biol 6:285–292

    Article  CAS  Google Scholar 

  23. Kawasaki Y, Nagao K, Nakamura T, Yanagida M (2006) Fission yeast MAP kinase is required for the increased securing-separase interaction that rescues separase mutants under stresses. Cell Cycle 16:1831–1839

    Article  Google Scholar 

  24. Keaton MA, Lew DJ (2006) Eavesdropping on the cytoskeleton: progress and controversy in the yeast morphogenesis checkpoint. Curr Opin Microbiol 6:540–546

    Article  CAS  Google Scholar 

  25. Kellogg R (2003) Wee1-dependent mechanisms required for coordination of cell growth and cell division. J Cell Sci 24:4883–4890

    Article  CAS  Google Scholar 

  26. Lew DJ (2003) The morphogenesis checkpoint: how yeast cells watch their figures. Curr Opin Cell Biol 6:648–653

    Article  CAS  Google Scholar 

  27. Lopez-Aviles S, Grande M, Gonzalez M, Helgesen AL, Alemany V, Sanchez-Piris M, Bachs O, Millar JB, Aligue R (2005) Inactivation of the Cdc25 phosphatase by the stress-activated Srk1 kinase in fission yeast. Mol Cell 1:49–59

    Article  CAS  Google Scholar 

  28. Mamely I, van Vugt MA, Smits VA, Semple JI, Lemmens B, Perrakis A, Medema RH, Freire R (2006) Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol 19:1950–1955

    Article  CAS  Google Scholar 

  29. Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AEH, Yaffe MB (2005) MAPKAP Kinase-2 Is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Molec Cell 1:37–48

    Article  CAS  Google Scholar 

  30. Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    Article  PubMed  CAS  Google Scholar 

  31. Nasmyth K (1993) Control of the yeast cell cycle by the Cdc28 protein kinase. Curr Opin Cell Biol 2:166–179

    Article  Google Scholar 

  32. Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 6266:503–508

    Article  Google Scholar 

  33. Oliferenko S, Balasubramanian MK (2002) Astral microtubules monitor metaphase spindle alignment in fission yeast. Nat Cell Biol 10:816–820

    Article  CAS  Google Scholar 

  34. Pearce AK, Humphrey TC (2001) Integrating stress-response and cell-cycle checkpoint pathways. Trends Cell Biol 10:426–433

    Article  Google Scholar 

  35. Petersen J, Hagan IM (2005) Polo kinase links the stress pathway to cell cycle control and tip growth in fission yeast. Nature 7041:507–512

    Article  CAS  Google Scholar 

  36. Proft M, Struhl K (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 6:1307–1317

    Article  Google Scholar 

  37. Reiser V, D'Aquino KE, Ee LS, Amon A (2006) The stress-activated mitogen-activated protein kinase signaling cascade promotes exit from mitosis. Mol Biol Cell 7:3136–3146

    Article  CAS  Google Scholar 

  38. Rupes I (2002) Checking cell size in yeast. Trends Genet 9:479–485

    Article  Google Scholar 

  39. Sanchez-Piris M, Posas F, Alemany V, Winge I, Hidalgo E, Bachs O, Aligue R (2002) The serine/threonine kinase Cmk2 is required for oxidative stress response in fission yeast. J Biol Chem 20:17722–17727

    Article  CAS  Google Scholar 

  40. Schwob E, Bohm T, Mendenhall MD, Nasmyth K (1994) The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 2:233–244

    Article  Google Scholar 

  41. Shiozaki K, Russell P (1996) Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev 18:2276–2288

    Article  Google Scholar 

  42. Smith DA, Toone WM, Chen D, Bahler J, Jones N, Morgan BA, Quinn J (2002) The Srk1 protein kinase is a target for the Sty1 stress-activated MAPK in fission yeast. J Biol Chem 36:33411–33421

    Article  Google Scholar 

  43. Stegmeier F, Amon A (2004) Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet 203–232

    Google Scholar 

  44. Tatebe H, Shimada K, Uzawa S, Morigasaki S, Shiozaki K (2005) Wsh3/Tea4 is a novel cell-end factor essential for bipolar distribution of Tea1 and protects cell polarity under environmental stress in S. pombe. Curr Biol 11:1006–1015

    Article  CAS  Google Scholar 

  45. van Vugt MA, Bras A, Medema RH (2004) Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell 5:799–811

    Article  Google Scholar 

  46. Versele M, Thorner J (2005) Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol 8:414–424

    Article  CAS  Google Scholar 

  47. Wilkinson MG, Millar JB (2000) Control of the eukaryotic cell cycle by MAP kinase signaling pathways. FASEB J 14:2147–2157

    Article  PubMed  CAS  Google Scholar 

  48. Wilkinson MG, Samuels M, Takeda T, Toone WM, Shieh JC, Toda T, Millar JB, Jones N (1996) The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev 18:2289–2301

    Article  Google Scholar 

  49. Wittenberg C, Sugimoto K, Reed SI (1990) G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 2:225–237

    Article  Google Scholar 

  50. Zapater M, Clotet J, Escote X, Posas F (2005) Control of cell cycle progression by the stress-activated Hog1 MAPK. Cell Cycle 1:6–7

    Article  Google Scholar 

  51. Zeng Y, Piwnica-Worms H (1999) DNA damage and replication checkpoints in fission yeast require nuclear exclusion of the Cdc25 phosphatase via 14-3-3 binding. Mol Cell Biol 11:7410–7419

    Google Scholar 

  52. Zimmerman S, Daga RR, Chang F (2004) Intra-nuclear microtubules and a mitotic spindle orientation checkpoint. Nat Cell Biol 12:1245–1246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Aligue .

Editor information

Francesc Posas Angel R. Nebreda

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lopez-Aviles, S., Aligue, R.M. (2007). Control of Cell Cycle by SAPKs in Budding and Fission Yeast. In: Posas, F., Nebreda, A.R. (eds) Stress-Activated Protein Kinases. Topics in Current Genetics, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2007_0246

Download citation

Publish with us

Policies and ethics