Skip to main content

Regulation of the heat shock response by heat shock transcription factors

  • Chapter
  • First Online:
Chaperones

Part of the book series: Topics in Current Genetics ((TCG,volume 16))

Abstract

The heat shock response is characterized by a rapid and robust increase in heat shock proteins upon exposure to protein-damaging stresses. This evolutionarily conserved cellular protection mechanism is primarily regulated at the level of transcription. In bacteria, heat shock-induced transcription is regulated by the activation of σ32 factor, whereas eukaryotes utilize heat shock transcription factors (HSFs) that bind to specific heat shock elements (HSEs) within the promoters of their target genes. Unlike yeasts, nematodes, and fruit flies, which have a single HSF, vertebrates and plants have an entire HSF family. In addition to stress-induced activation, some members of the HSF family are also activated under non-stressful conditions, including development and differentiation. The activity of HSFs is under post-translational control, requiring trimerization, DNA binding, and hyperphosphorylation. The interplay between different family members and other interacting proteins adds further complexity to HSF-mediated transcription. Here, we summarize the current knowledge of the transcriptional regulation of the heat shock response, highlighting recent advances in exploring the multi-faceted nature of heat shock transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Abravaya K, Phillips B, Morimoto RI (1991a) Heat shock-induced interactions of heat shock transcription factor and the human hsp70 promoter examined by in vivo footprinting. Mol Cell Biol 11:586-592

    PubMed  CAS  Google Scholar 

  • 2. Abravaya K, Phillips B, Morimoto RI (1991b) Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes Dev 5:2117-2127

    PubMed  CAS  Google Scholar 

  • 3. Abravaya K, Myers MP, Murphy SP, Morimoto RI (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6:1153-1164

    PubMed  CAS  Google Scholar 

  • 4. Ahn SG, Thiele DJ (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17:516-528

    PubMed  CAS  Google Scholar 

  • 5. Ahn SG, Liu PC, Klyachko K, Morimoto RI, Thiele DJ (2001) The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress. Genes Dev 15:2134-2145

    PubMed  CAS  Google Scholar 

  • 6. Alastalo TP, Lönnström M, Leppä S, Kaarniranta K, Pelto-Huikko M, Sistonen L, Parvinen M (1998) Stage-specific expression and cellular localization of the heat shock factor 2 isoforms in the rat Seminiferous epithelium. Exp Cell Res 240:16-27

    PubMed  CAS  Google Scholar 

  • 7. Alastalo TP, Hellesuo M, Sandqvist A, Hietakangas V, Kallio M, Sistonen L (2003) Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J Cell Sci 116:3557-3570

    PubMed  CAS  Google Scholar 

  • 8. Ali A, Bharadwaj S, O'Carroll R, Ovsenek N (1998) HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18:4949-4960

    PubMed  CAS  Google Scholar 

  • 9. Amin J, Ananthan J, Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 8:3761-3769

    PubMed  CAS  Google Scholar 

  • 10. Andrulis ED, Werner J, Nazarian A, Erdjument-Bromage H, Tempst P, Lis JT (2002) The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 420:837-841

    PubMed  CAS  Google Scholar 

  • 11. Arsene F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3-9

    PubMed  CAS  Google Scholar 

  • 12. Baler R, Welch WJ, Voellmy R (1992) Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J Cell Biol 117: 1151-1159

    PubMed  CAS  Google Scholar 

  • 13. Beere HM (2004) 'The stress of dying': the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117:2641-2651

    PubMed  CAS  Google Scholar 

  • 14. Bevilacqua A, Fiorenza MT, Mangia F (1997) Developmental activation of an episomic hsp70 gene promoter in two-cell mouse embryos by transcription factor Sp1. Nucleic Acids Res 25:1333-1338

    PubMed  CAS  Google Scholar 

  • 15. Bharadwaj S, Ali A, Ovsenek N (1999) Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol Cell Biol 19:8033-8041

    PubMed  CAS  Google Scholar 

  • 16. Bharti K, Von Koskull-Doring P, Bharti S, Kumar P, Tintschl-Korbitzer A, Treuter E, Nover L (2004) Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell 16:1521-1535

    PubMed  CAS  Google Scholar 

  • 17. Biamonti G (2004) Nuclear stress bodies: a heterochromatin affair? Nat Rev Mol Cell Biol 5:493-498

    PubMed  CAS  Google Scholar 

  • 18. Boehm AK, Saunders A, Werner J, Lis JT (2003) Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol Cell Biol 23:7628-7637

    PubMed  CAS  Google Scholar 

  • 19. Boellmann F, Guettouche T, Guo Y, Fenna M, Mnayer L, Voellmy R (2004) DAXX interacts with heat shock factor 1 during stress activation and enhances its transcriptional activity. Proc Natl Acad Sci USA 101:4100-4105

    PubMed  CAS  Google Scholar 

  • 20. Brown SA, Imbalzano AN, Kingston RE (1996) Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev 10:1479-1490

    PubMed  CAS  Google Scholar 

  • 21. Bu L, Jin Y, Shi Y, Chu R, Ban A, Eiberg H, Andres L, Jiang H, Zheng G, Qian M, Cui B, Xia Y, Liu J, Hu L, Zhao G, Hayden MR, Kong X (2002) Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 31:276-278

    PubMed  CAS  Google Scholar 

  • 22. Cahill CM, Waterman WR, Xie Y, Auron PE, Calderwood SK (1996) Transcriptional repression of the prointerleukin 1beta gene by heat shock factor 1. J Biol Chem 271:24874-24879

    PubMed  CAS  Google Scholar 

  • 23. Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323-337

    PubMed  CAS  Google Scholar 

  • 24. Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, Brazma A, Jones N, Bahler J (2003) Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell 14:214-229

    PubMed  CAS  Google Scholar 

  • 25. Chen Y, Barlev NA, Westergaard O, Jakobsen BK (1993) Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity. EMBO J 12:5007-5018

    PubMed  CAS  Google Scholar 

  • 26. Chiodi I, Biggiogera M, Denegri M, Corioni M, Weighardt F, Cobianchi F, Riva S, Biamonti G (2000) Structure and dynamics of hnRNP-labelled nuclear bodies induced by stress treatments. J Cell Sci 113:4043-4053

    PubMed  CAS  Google Scholar 

  • 27. Choi H-S, Lin Z, Li B, Liu AY-C (1990) Age-dependent decrease in the heat-inducible DNA sequence-specific binding activity of human diploid fibroblasts. J Biol Chem 265:18005-18011

    PubMed  CAS  Google Scholar 

  • 28. Christians E, Davis AA, Thomas SD, Benjamin IJ (2000) Maternal effect of Hsf1 on reproductive success. Nature 407:693-694

    PubMed  CAS  Google Scholar 

  • 29. Chu B, Soncin F, Price BD, Stevenson MA, Calderwood SK (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271:30847-30857

    PubMed  CAS  Google Scholar 

  • 30. Chu B, Zhong R, Soncin F, Stevenson MA, Calderwood SK (1998) Transcriptional activity of heat shock factor 1 at 37 degrees C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Calpha and Czeta. J Biol Chem 273:18640-18646

    PubMed  CAS  Google Scholar 

  • 31. Clos J, Westwood JT, Becker PB, Wilson S, Lambert K, Wu C (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63:1085-1097

    PubMed  CAS  Google Scholar 

  • 32. Corey LL, Weirich CS, Benjamin IJ, Kingston RE (2003) Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev 17:1392-1401

    PubMed  CAS  Google Scholar 

  • 33. Cotto JJ, Kline M, Morimoto RI (1996) Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J Biol Chem 271:3355-3358

    PubMed  CAS  Google Scholar 

  • 34. Cotto J, Fox S, Morimoto R (1997) HSF1 granules: a novel stress-induced nuclear compartment of human cells. J Cell Sci 110:2925-2934

    PubMed  CAS  Google Scholar 

  • 35. Dai R, Frejtag W, He B, Zhang Y, Mivechi NF (2000) c-Jun NH2-terminal kinase targeting and phosphorylation of heat shock factor-1 suppress its transcriptional activity. J Biol Chem 275:18210-18218

    PubMed  CAS  Google Scholar 

  • 36. Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V, Li HH, Madamanchi N, Xu W, Neckers L, Cyr D, Patterson C (2003) CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 22:5446-5458

    PubMed  CAS  Google Scholar 

  • 37. Damberger FF, Pelton JG, Harrison CJ, Nelson HC, Wemmer DE (1994) Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy. Protein Sci 3:1806-1821

    PubMed  CAS  Google Scholar 

  • 38. Denegri M, Chiodi I, Corioni M, Cobianchi F, Riva S, Biamonti G (2001) Stress-induced nuclear bodies are sites of accumulation of pre-mRNA processing factors. Mol Biol Cell 12:3502-3514

    PubMed  CAS  Google Scholar 

  • 39. Denegri M, Moralli D, Rocchi M, Biggiogera M, Raimondi E, Cobianchi F, De Carli L, Riva S, Biamonti G (2002) Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies. Mol Biol Cell 13:2069-2079

    PubMed  CAS  Google Scholar 

  • 40. Eriksson M, Jokinen E, Sistonen L, Leppä S (2000) Heat shock factor 2 is activated during mouse heart development. Int J Dev Biol 44:471-477

    PubMed  CAS  Google Scholar 

  • 41. Fargnoli J, Kunisada T, Fornace AJ Jr, Schneider EL, Holbrook NJ (1990) Decreased expression of heat shock protein 70 mRNA and protein after heat treatment in cells of aged rats. Proc Natl Acad Sci USA 87:846-850

    PubMed  CAS  Google Scholar 

  • 42. Fawcett TW, Sylvester SL, Sarge KD, Morimoto RI, Holbrook NJ (1994) Effects of neurohormonal stress and aging on the activation of mammalian heat shock factor 1. J Biol Chem 269:32272-32278

    PubMed  CAS  Google Scholar 

  • 43. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239-247

    PubMed  CAS  Google Scholar 

  • 44. Fiorenza MT, Farkas T, Dissing M, Kolding D, Zimarino V (1995) Complex expression of murine heat shock transcription factors. Nucleic Acids Res 11:467-474

    Google Scholar 

  • 45. Frejtag W, Zhang Y, Dai R, Anderson MG, Mivechi NF (2001) Heat shock factor-4 (HSF-4a) represses basal transcription through interaction with TFIIF. J Biol Chem 276:14685-14694

    PubMed  CAS  Google Scholar 

  • 46. Fujimoto M, Izu H, Seki K, Fukuda K, Nishida T, Yamada S, Kato K, Yonemura S, Inouye S, Nakai A (2004) HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J 23:4297-4306

    PubMed  CAS  Google Scholar 

  • 47. Gallo GJ, Schuetz TJ, Kingston RE (1991) Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae. Mol Cell Biol 11:281-288

    PubMed  CAS  Google Scholar 

  • 48. Gallo GJ, Prentice H, Kingston RE (1993) Heat shock factor is required for growth at normal temperatures in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 13:749-761

    PubMed  CAS  Google Scholar 

  • 49. Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161:1101-1112

    PubMed  CAS  Google Scholar 

  • 50. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241-4257

    PubMed  CAS  Google Scholar 

  • 51. Gilmour DS, Lis JT (1985) In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster. Mol Cell Biol 5:2009-2018

    PubMed  CAS  Google Scholar 

  • 52. Goodson ML, Sarge KD (1995) Heat-inducible DNA binding of purified heat shock transcription factor 1. J Biol Chem 270:2447-2450

    PubMed  CAS  Google Scholar 

  • 53. Goodson ML, Park-Sarge OK, Sarge KD (1995) Tissue-dependent expression of heat shock factor 2 isoforms with distinct transcriptional activities. Mol Cell Biol 15:5288-5293

    PubMed  CAS  Google Scholar 

  • 54. Goodson ML, Hong Y, Rogers R, Matunis MJ, Park-Sarge OK, Sarge KD (2001) Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J Biol Chem 276:18513-18518

    PubMed  CAS  Google Scholar 

  • 55. Green M, Schuetz TJ, Sullivan EK, Kingston RE (1995) A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol Cell Biol 15:3354-3362

    PubMed  CAS  Google Scholar 

  • 56. Greene JM, Larin Z, Taylor IC, Prentice H, Gwinn KA, Kingston RE (1987) Multiple basal elements of a human hsp70 promoter function differently in human and rodent cell lines. Mol Cell Biol 7:3646-3655

    PubMed  CAS  Google Scholar 

  • 57. Grossman AD, Erickson JW, Gross CA (1984) The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383-390

    PubMed  CAS  Google Scholar 

  • 58. Guo Y, Guettouche T, Fenna M, Boellmann F, Pratt WB, Toft DO, Smith DF, Voellmy R (2001) Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J Biol Chem 276:45791-45799

    PubMed  CAS  Google Scholar 

  • 59. Hahn JS, Thiele DJ (2004) Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem 279:5169-5176

    PubMed  CAS  Google Scholar 

  • 60. Hahn JS, Hu Z, Thiele DJ, Iyer VR (2004) Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24:5249-5256

    PubMed  CAS  Google Scholar 

  • 61. Harrison CJ, Bohm AA, Nelson HC (1994) Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263:224-227

    PubMed  CAS  Google Scholar 

  • 62. Hashikawa N, Sakurai H (2004) Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element. Mol Cell Biol 24:3648-3659

    PubMed  CAS  Google Scholar 

  • 63. He H, Soncin F, Grammatikakis N, Li Y, Siganou A, Gong J, Brown SA, Kingston RE, Calderwood SK (2003) Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J Biol Chem 278:35465-35475

    PubMed  CAS  Google Scholar 

  • 64. Hietakangas V, Ahlskog JK, Jakobsson AM, Hellesuo M, Sahlberg NM, Holmberg CI, Mikhailov A, Palvimo JJ, Pirkkala L, Sistonen L (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol Cell Biol 23:2953-2968

    PubMed  CAS  Google Scholar 

  • 65. Holmberg CI, Leppä S, Eriksson JE, Sistonen L (1997) The phorbol ester 12-O-tetradecanoylphorbol 13-acetate enhances the heat-induced stress response. J Biol Chem 272:6792-6798

    PubMed  CAS  Google Scholar 

  • 66. Holmberg CI, Illman SA, Kallio M, Mikhailov A, Sistonen L (2000) Formation of nuclear HSF1 granules varies depending on stress stimuli. Cell Stress Chap 5:219-228

    CAS  Google Scholar 

  • 67. Holmberg CI, Hietakangas V, Mikhailov A, Rantanen JO, Kallio M, Meinander A, Hellman J, Morrice N, MacKintosh C, Morimoto RI, Eriksson JE, Sistonen L (2001) Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 20:3800-3810

    PubMed  CAS  Google Scholar 

  • 68. Holmberg CI, Tran SEF, Eriksson JE, Sistonen L (2002) Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 27:619-627

    PubMed  CAS  Google Scholar 

  • 69. Hong S, Kim SH, Heo MA, Choi YH, Park MJ, Yoo MA, Kim HD, Kang HS, Cheong J (2004) Coactivator ASC-2 mediates heat shock factor 1-mediated transactivation dependent on heat shock. FEBS Lett 559:165-170

    PubMed  CAS  Google Scholar 

  • 70. Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK, Sarge KD, Goodson M (2001) Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem 276:40263-40267

    PubMed  CAS  Google Scholar 

  • 71. Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142-1145

    PubMed  CAS  Google Scholar 

  • 72. Imbriano C, Bolognese F, Gurtner A, Piaggio G, Mantovani R (2001) HSP-CBF is an NF-Y-dependent coactivator of the heat shock promoters CCAAT boxes. J Biol Chem 276:26332-26339

    PubMed  CAS  Google Scholar 

  • 73. Inouye S, Katsuki K, Izu H, Fujimoto M, Sugahara K, Yamada S, Shinkai Y, Oka Y, Katoh Y, Nakai A (2003) Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures. Mol Cell Biol 23:5882-5895

    PubMed  CAS  Google Scholar 

  • 74. Izu H, Inouye S, Fujimoto M, Shiraishi K, Naito K, Nakai A (2004) Heat-shock transcription factor 1 is involved in quality control mechanisms in male germ cells. Biol Reprod 70:18-24

    PubMed  CAS  Google Scholar 

  • 75. Jakobsen BK, Pelham HR (1988) Constitutive binding of yeast heat shock factor to DNA in vivo. Mol Cell Biol 8:5040-5042

    PubMed  CAS  Google Scholar 

  • 76. Jedlicka P, Mortin MA, Wu C (1997) Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J 16:2452-2462

    PubMed  CAS  Google Scholar 

  • 77. Jolly C, Morimoto R, Robert-Nicoud M, Vourc'h C (1997) HSF1 transcription factor concentrates in nuclear foci during heat shock: relationship with transcription sites. J Cell Sci 110:2935-2941

    PubMed  CAS  Google Scholar 

  • 78. Jolly C, Usson Y, Morimoto RI (1999) Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc Natl Acad Sci USA 96:6769-6774

    PubMed  CAS  Google Scholar 

  • 79. Jolly C, Konecny L, Grady DL, Kutskova YA, Cotto JJ, Morimoto RI, Vourc'h C (2002) In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. J Cell Biol 156:775-781

    PubMed  CAS  Google Scholar 

  • 80. Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Vourc'h C (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164:25-33

    PubMed  CAS  Google Scholar 

  • 81. Jurivich DA, Sistonen L, Kroes RA, Morimoto RI (1992) Effect of sodium salicylate on the human heat shock response. Science 255:1243-1245

    PubMed  CAS  Google Scholar 

  • 82. Jurivich DA, Pachetti C, Qiu L, Welk JF (1995) Salicylate triggers heat shock factor differently than heat. J Biol Chem 270:24489-24495

    PubMed  CAS  Google Scholar 

  • 83. Jäättelä M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248:30-43

    Google Scholar 

  • 84. Kallio M, Chang Y, Manuel M, Alastalo TP, Rallu M, Gitton Y, Pirkkala L, Loones MT, Paslaru L, Larney S, Hiard S, Morange M, Sistonen L, Mezger V (2002) Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J 21:2591-2601

    PubMed  CAS  Google Scholar 

  • 85. Kawazoe Y, Nakai A, Tanabe M, Nagata K (1998) Proteasome inhibition leads to the activation of all members of the heat-shock-factor family. Eur J Biochem 255:356-362

    PubMed  CAS  Google Scholar 

  • 86. Kline MP, Morimoto RI (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17:2107-2115

    PubMed  CAS  Google Scholar 

  • 87. Knauf U, Newton EM, Kyriakis J, Kingston RE (1996) Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev 10:2782-2793

    PubMed  CAS  Google Scholar 

  • 88. Kroeger PE, Morimoto RI (1994) Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Mol Cell Biol 14:7592-7603

    PubMed  CAS  Google Scholar 

  • 89. Kroeger PE, Sarge KD, Morimoto RI (1993) Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Mol Cell Biol 13:3370-3383

    PubMed  CAS  Google Scholar 

  • 90. Landsberger N, Wolffe AP (1995) Role of chromatin and Xenopus laevis heat shock transcription factor in regulation of transcription from the X. laevis hsp70 promoter in vivo. Mol Cell Biol 15:6013-6024

    PubMed  CAS  Google Scholar 

  • 91. Larson JS, Schuetz TJ, Kingston RE (1988) Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature 335:372-375

    PubMed  CAS  Google Scholar 

  • 92. Leppä S, Pirkkala L, Saarento H, Sarge KD, Sistonen L (1997) Overexpression of HSF2-beta inhibits hemin-induced heat shock gene expression and erythroid differentiation in K562 cells. J Biol Chem 272:15293-15298

    Google Scholar 

  • 93. Lis J (1998) Promoter-associated pausing in promoter architecture and postinitiation transcriptional regulation. Cold Spring Harbor Symp Quant Biol 63:347-356

    PubMed  CAS  Google Scholar 

  • 94. Lis JT, Mason P, Peng J, Price DH, Werner J (2000) P-TEFb kinase recruitment and function at heat shock loci. Genes Dev 14:792-803

    PubMed  CAS  Google Scholar 

  • 95. Littlefield O, Nelson HC (1999) A new use for the 'wing' of the 'winged' helix-turn-helix motif in the HSF-DNA cocrystal. Nat Struct Biol 6:464-470

    PubMed  CAS  Google Scholar 

  • 96. Mathew A, Mathur SK, Morimoto RI (1998) Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol Cell Biol 18:5091-5098

    PubMed  CAS  Google Scholar 

  • 97. McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523-7528

    PubMed  CAS  Google Scholar 

  • 98. McMillan DR, Christians E, Forster M, Xiao X, Connell P, Plumier JC, Zuo X, Richardson J, Morgan S, Benjamin IJ (2002) Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function in mice. Mol Cell Biol 22:8005-8014

    PubMed  CAS  Google Scholar 

  • 99. Mezger V, Rallu M, Morimoto RI, Morange M, Renard JP (1994) Heat shock factor 2-like activity in mouse blastocysts. Dev Biol 166:819-822

    PubMed  CAS  Google Scholar 

  • 100. Mieusset R, Bujan L (1995) Testicular heating and its possible contributions to male infertility: a review. Int J Androl 18:169-184

    PubMed  CAS  Google Scholar 

  • 101. Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555-1567

    PubMed  CAS  Google Scholar 

  • 102. Mogk A, Homuth G, Scholz C, Kim L, Schmid FX, Schumann W (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16:4579-4590

    PubMed  CAS  Google Scholar 

  • 103. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788-3796

    PubMed  CAS  Google Scholar 

  • 104. Morimoto RI (2002) Dynamic remodeling of transcription complexes by molecular chaperones. Cell 110:281-284

    PubMed  CAS  Google Scholar 

  • 105. Morley JF, Morimoto RI (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15:657-664

    PubMed  CAS  Google Scholar 

  • 106. Morley JF, Brignull HR, Weyers JJ, Morimoto RI (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci USA 99:10417-10422

    PubMed  Google Scholar 

  • 107. Mosser DD, Morimoto RI (2004) Molecular chaperones and the stress of oncogenesis. Oncogene 23:2907-2918

    PubMed  CAS  Google Scholar 

  • 108. Mosser DD, Theodorakis NG, Morimoto RI (1988) Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol Cell Biol 8:4736-4744

    PubMed  CAS  Google Scholar 

  • 109. Murphy SP, Gorzowski JJ, Sarge KD, Phillips B (1994) Characterization of constitutive HSF2 DNA-binding activity in mouse embryonal carcinoma cells. Mol Cell Biol 14:5309-5317

    PubMed  CAS  Google Scholar 

  • 110. Murray JI, Whitfield ML, Trinklein ND, Myers RM, Brown PO, Botstein D (2004) Diverse and specific gene expression responses to stresses in cultured human cells. Mol Biol Cell 15:2361-2374

    PubMed  CAS  Google Scholar 

  • 111. Nakai A, Morimoto RI (1993) Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol 13:1983-1997

    PubMed  CAS  Google Scholar 

  • 112. Nakai A, Kawazoe Y, Tanabe M, Nagata K, Morimoto RI (1995) The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Mol Cell Biol 15:5268-5278

    PubMed  CAS  Google Scholar 

  • 113. Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K (1997) HSF4, a new member of the human heat shock factor family, which lacks properties of a transcriptional activator. Mol Cell Biol 17:469-481

    PubMed  CAS  Google Scholar 

  • 114. Nakai A, Suzuki M, Tanabe M (2000) Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1. EMBO J 19:1545-1554

    PubMed  CAS  Google Scholar 

  • 115. Nelson DW, Padgett RW (2003) Insulin worms its way into the spotlight. Genes Dev 17:813-818

    PubMed  CAS  Google Scholar 

  • 116. Newton EM, Knauf U, Green M, Kingston RE (1996) The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Mol Cell Biol 16:839-846

    PubMed  CAS  Google Scholar 

  • 117. Ni Z, Schwartz BE, Werner J, Suarez J-R, Lis JT (2004) Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes. Mol Cell 13:55-65

    PubMed  CAS  Google Scholar 

  • 118. Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chap 6:177-189

    CAS  Google Scholar 

  • 119. Nykänen P, Alastalo TP, Ahlskog J, Horelli-Kuitunen N, Pirkkala L, Sistonen L (2001) Genomic organization and promoter analysis of the human heat shock factor 2 gene. Cell Stress Chap 6:377-385

    Google Scholar 

  • 120. Park JM, Werner J, Kim JM, Lis JT, Kim YJ (2001) Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol Cell 8:9-19

    PubMed  CAS  Google Scholar 

  • 121. Pelham HR (1982) A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene. Cell 30:517-528

    PubMed  CAS  Google Scholar 

  • 122. Pirkkala L, Alastalo TP, Nykänen P, Seppä L, Sistonen L (1999) Differentiation lineage-specific expression of human heat shock transcription factor 2. FASEB J 13:1089-1098

    PubMed  CAS  Google Scholar 

  • 123. Pirkkala L, Alastalo TP, Zuo X, Benjamin IJ, Sistonen L (2000) Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol Cell Biol 20:2670-2675

    PubMed  CAS  Google Scholar 

  • 124. Pirkkala L, Nykänen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118-1131

    PubMed  CAS  Google Scholar 

  • 125. Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108:501-512

    PubMed  CAS  Google Scholar 

  • 126. Rabindran SK, Giorgi G, Clos J, Wu C (1991) Molecular cloning and expression of human heat shock factor, HSF1. Proc Natl Acad Sci USA 88:6906-6910

    PubMed  CAS  Google Scholar 

  • 127. Rabindran SK, Haroun RI, Clos J, Wisniewski J, Wu C (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259:230-234

    PubMed  CAS  Google Scholar 

  • 128. Rallu M, Loones M, Lallemand Y, Morimoto R, Morange M, Mezger V (1997) Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc Natl Acad Sci USA 94:2392-2397

    PubMed  CAS  Google Scholar 

  • 129. Rasmussen EB, Lis JT (1993) In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc Natl Acad Sci USA 90:7923-7927

    PubMed  CAS  Google Scholar 

  • 130. Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571-573

    CAS  Google Scholar 

  • 131. Rizzi N, Denegri M, Chiodi I, Corioni M, Valgardsdottir R, Cobianchi F, Riva S, Biamonti G (2004) Transcriptional activation of a constitutive heterochromatic domain of the human genome in response to heat shock. Mol Biol Cell 15:543-551

    PubMed  CAS  Google Scholar 

  • 132. Rougvie AE, Lis JT (1988) The RNA polymerase II molecule at the 5' end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54:795-804

    PubMed  CAS  Google Scholar 

  • 133. Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU (2002) Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci USA 99 Suppl 4:16412-16418

    Google Scholar 

  • 134. Sandqvist A, Sistonen L (2004) Nuclear stress granules: the awakening of a sleeping beauty? J Cell Biol 164:15-17

    PubMed  CAS  Google Scholar 

  • 135. Sarge KD, Zimarino V, Holm K, Wu C, Morimoto RI (1991) Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev 5:1902-1911

    PubMed  CAS  Google Scholar 

  • 136. Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392-1407

    PubMed  CAS  Google Scholar 

  • 137. Sarge KD, Park-Sarge OK, Kirby JD, Mayo KE, Morimoto RI (1994) Expression of heat shock factor 2 in mouse testis: potential role as a regulator of heat-shock protein gene expression during spermatogenesis. Biol Reprod 50:1334-1343

    PubMed  CAS  Google Scholar 

  • 138. Sarge KD, Bray AE, Goodson ML (1995) Altered stress response in testis. Nature 374:126

    PubMed  CAS  Google Scholar 

  • 139. Schuetz TJ, Gallo GJ, Sheldon L, Tempst P, Kingston RE (1991) Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc Natl Acad Sci USA 88:6911-6915

    PubMed  CAS  Google Scholar 

  • 140. Shi Y, Kroeger PE, Morimoto RI (1995) The carboxyl-terminal transactivation domain of heat shock factor 1 is negatively regulated and stress responsive. Mol Cell Biol 15:4309-4318

    PubMed  CAS  Google Scholar 

  • 141. Shi Y, Mosser DD, Morimoto RI (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12:654-666

    PubMed  CAS  Google Scholar 

  • 142. Singh IS, Viscardi RM, Kalvakolanu I, Calderwood S, Hasday JD (2000) Inhibition of tumor necrosis factor-alpha transcription in macrophages exposed to febrile range temperature. A possible role for heat shock factor-1 as a negative transcriptional regulator. J Biol Chem 275:9841-9848

    PubMed  CAS  Google Scholar 

  • 143. Singh IS, He JR, Calderwood S, Hasday JD (2002) A high affinity HSF-1 binding site in the 5'-untranslated region of the murine tumor necrosis factor-alpha gene is a transcriptional repressor. J Biol Chem 277:4981-4988

    PubMed  CAS  Google Scholar 

  • 144. Sistonen L, Sarge KD, Phillips B, Abravaya K, Morimoto RI (1992) Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol 12:4104-4111

    PubMed  CAS  Google Scholar 

  • 145. Sistonen L, Sarge KD, Morimoto RI (1994) Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol Cell Biol 14:2087-2099

    PubMed  CAS  Google Scholar 

  • 146. Slavotinek AM, Biesecker LG (2001) Unfolding the role of chaperones and chaperonins in human disease. Trends Genet 17:528-535

    PubMed  CAS  Google Scholar 

  • 147. Sorger PK (1990) Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62: 793-805

    PubMed  CAS  Google Scholar 

  • 148. Sorger PK, Nelson HC (1989) Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59:807-813

    PubMed  CAS  Google Scholar 

  • 149. Sorger PK, Pelham HR (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855-864

    PubMed  CAS  Google Scholar 

  • 150. Sorger PK, Lewis MJ, Pelham HR (1987) Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329:81-84

    PubMed  CAS  Google Scholar 

  • 151. Söti C, Csermely P (2003) Aging and molecular chaperones. Exp Gerontol 38:1037-1040

    Google Scholar 

  • 152. Sreedhar AS, Csermely P (2004) Heat shock protein in the regulation of apoptosis: new strategies in tumor therapy. A comprehensive review. Pharmacol Ther 101:227-257

    PubMed  CAS  Google Scholar 

  • 153. Straus DB, Walter WA, Gross CA (1987) The heat shock response of E. coli is regulated by changes in the concentration of sigma 32. Nature 329:348-351

    PubMed  CAS  Google Scholar 

  • 154. Sullivan EK, Weirich CS, Guyon JR, Sif S, Kingston RE (2001) Transcriptional activation domains of human heat shock factor 1 recruit human SWI/SNF. Mol Cell Biol 21:5826-5837

    PubMed  CAS  Google Scholar 

  • 155. Svejstrup JQ (2004) The RNA polymerase II transcription cycle: cycling through chromatin. Biochim Biophys Acta 1677:64-73

    PubMed  CAS  Google Scholar 

  • 156. Takagaki Y, Manley JL (2000) Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol 20:1515-1525

    PubMed  CAS  Google Scholar 

  • 157. Tanabe M, Kawazoe Y, Takeda S, Morimoto RI, Nagata K, Nakai A (1998) Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J 17:1750-1758

    PubMed  CAS  Google Scholar 

  • 158. Tanabe M, Sasai N, Nagata K, Liu XD, Liu PC, Thiele DJ, Nakai A (1999) The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J Biol Chem 274:27845-27856

    PubMed  CAS  Google Scholar 

  • 159. Tatsuta T, Tomoyasu T, Bukau B, Kitagawa M, Mori H, Karata K, Ogura T (1998) Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Mol Microbiol 30:583-593

    PubMed  CAS  Google Scholar 

  • 160. Tilly K, McKittrick N, Zylicz M, Georgopoulos C (1983) The dnaK protein modulates the heat-shock response of Escherichia coli. Cell 34:641-646

    PubMed  CAS  Google Scholar 

  • 161. Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389-398

    PubMed  CAS  Google Scholar 

  • 162. Tomoyasu T, Ogura T, Tatsuta T, Bukau B (1998) Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Microbiol 30:567-581

    PubMed  CAS  Google Scholar 

  • 163. Trinklein ND, Murray JI, Hartman SJ, Botstein D, Myers RM (2004) The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15:1254-1261

    PubMed  CAS  Google Scholar 

  • 164. Vuister GW, Kim SJ, Orosz A, Marquardt J, Wu C, Bax A (1994a) Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nat Struct Biol 1:605-614

    PubMed  CAS  Google Scholar 

  • 165. Vuister GW, Kim SJ, Wu C, Bax A (1994b) NMR evidence for similarities between the DNA-binding regions of Drosophila melanogaster heat shock factor and the helix-turn-helix and HNF-3/forkhead families of transcription factors. Biochemistry 33:10-16

    PubMed  CAS  Google Scholar 

  • 166. Wang G, Zhang J, Moskophidis D, Mivechi NF (2003) Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 36:48-61

    PubMed  CAS  Google Scholar 

  • 167. Wang G, Ying Z, Jin X, Tu N, Zhang Y, Phillips M, Moskophidis D, Mivechi NF (2004) Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis 38:66-80

    PubMed  Google Scholar 

  • 168. Wang X, Grammatikakis N, Siganou A, Calderwood SK (2003) Regulation of molecular chaperone gene transcription involves the serine phosphorylation, 14-3-3 epsilon binding, and cytoplasmic sequestration of heat shock factor 1. Mol Cell Biol 23:6013-6026

    PubMed  CAS  Google Scholar 

  • 169. Weighardt F, Cobianchi F, Cartegni L, Chiodi I, Villa A, Riva S, Biamonti G (1999) A novel hnRNP protein (HAP/SAF-B) enters a subset of hnRNP complexes and relocates in nuclear granules in response to heat shock. J Cell Sci 112:1465-1476

    PubMed  CAS  Google Scholar 

  • 170. Westerheide SD, Morimoto RI (2005) Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 280:33097-33100

    PubMed  CAS  Google Scholar 

  • 171. Westwood JT, Wu C (1993) Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol Cell Biol 13:3481-3486

    PubMed  CAS  Google Scholar 

  • 172. Wiederrecht G, Seto D, Parker CS (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54:841-853

    PubMed  CAS  Google Scholar 

  • 173. Williams GT, Morimoto RI (1990) Maximal stress-induced transcription from the human HSP70 promoter requires interactions with the basal promoter elements independent of rotational alignment. Mol Cell Biol 10:3125-3136

    PubMed  CAS  Google Scholar 

  • 174. Williams GT, McClanahan TK, Morimoto RI (1989) E1a transactivation of the human HSP70 promoter is mediated through the basal transcriptional complex. Mol Cell Biol 9:2574-2587

    PubMed  CAS  Google Scholar 

  • 175. Wu C (1984) Two protein-binding sites in chromatin implicated in the activation of heat-shock genes. Nature 309:229-234

    PubMed  CAS  Google Scholar 

  • 176. Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441-469

    PubMed  CAS  Google Scholar 

  • 177. Wu C, Wilson S, Walker B, Dawid I, Paisley T, Zimarino V, Ueda H (1987) Purification and properties of Drosophila heat shock activator protein. Science 238:1247-1253

    PubMed  CAS  Google Scholar 

  • 178. Xia W, Voellmy R (1997) Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers. J Biol Chem 272:4094-4102

    PubMed  CAS  Google Scholar 

  • 179. Xia W, Guo Y, Vilaboa N, Zuo J, Voellmy R (1998) Transcriptional activation of heat shock factor HSF1 probed by phosphopeptide analysis of factor 32P-labeled in vivo. J Biol Chem 273:8749-8755

    PubMed  CAS  Google Scholar 

  • 180. Xiao H, Lis JT (1988) Germline transformation used to define key features of heat-shock response elements. Science 239:1139-1142

    PubMed  CAS  Google Scholar 

  • 181. Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18:5943-5952

    PubMed  CAS  Google Scholar 

  • 182. Xie Y, Chen C, Stevenson MA, Auron PE, Calderwood SK (2002) Heat shock factor 1 represses transcription of the IL-1beta gene through physical interaction with the nuclear factor of interleukin 6. J Biol Chem 277:11802-11810

    PubMed  CAS  Google Scholar 

  • 183. Xing H, Mayhew CN, Cullen KE, Park-Sarge OK, Sarge KD (2004) HSF1 modulation of Hsp70 mRNA polyadenylation via interaction with symplekin. J Biol Chem 279:10551-10555

    PubMed  CAS  Google Scholar 

  • 184. Yan LJ, Christians ES, Liu L, Xiao X, Sohal RS, Benjamin IJ (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21:5164-5172

    PubMed  CAS  Google Scholar 

  • 185. Yoshima T, Yura T, Yanagi H (1998) Function of the C-terminal transactivation domain of human heat shock factor 2 is modulated by the adjacent negative regulatory segment. Nucleic Acids Res 26:2580-2585

    PubMed  CAS  Google Scholar 

  • 186. Yura T, Nakahigashi K (1999) Regulation of the heat-shock response. Curr Opin Microbiol 2:153-158

    PubMed  CAS  Google Scholar 

  • 187. Zhong M, Orosz A, Wu C (1998) Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol Cell 2:101-108

    PubMed  CAS  Google Scholar 

  • 188. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471-480

    PubMed  CAS  Google Scholar 

  • 189. Zuo J, Baler R, Dahl G, Voellmy R (1994) Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol Cell Biol 14:7557-7568

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ineke Braakman

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Hietakangas, V., Sistonen, L. Regulation of the heat shock response by heat shock transcription factors. In: Braakman, I. (eds) Chaperones. Topics in Current Genetics, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_109

Download citation

Publish with us

Policies and ethics