Skip to main content

Template-induced protein misfolding underlying prion diseases

  • Chapter
  • First Online:
Chaperones

Part of the book series: Topics in Current Genetics ((TCG,volume 16))

  • 146 Accesses

Abstract

Proteins with prion properties are closely associated to a class of fatal neurodegenerative illnesses in mammals and to the emergence and propagation of phenotypic traits in yeast. The structural transition from the correctly folded, native form of a prion protein to a persistent misfolded form that ultimately may cause cell death or the transmission of phenotypic traits are not yet fully understood. The structural and functional properties of mammalian and yeast prions in their soluble and oligomeric forms are presented as are the mechanistic models accounting for this structure-based mode of inheritance. This review highlights a number of unquestioned issues and unanswered questions that may allow a better understanding of the role of prion proteins in vivo and their propagation mechanism(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Adler V, Zeiler B, Kryukov V, Kascsak R, Rubenstein R, Grossman A (2003) Small, highly structured RNAs participate in the conversion of human recombinant PrP(Sen) to PrP(Res) in vitro. J Mol Biol 332:47-57

    PubMed  CAS  Google Scholar 

  • 2. Aigle M, Lacroute F (1975) Genetic aspects of [URE3] a non-Mendelian cytoplasmically inherited mutation in yeast. Mol Gen Genet 136:327-335

    PubMed  CAS  Google Scholar 

  • 3. Alper T, Haig DA, Clarke MC (1966) The exceptionally small size of the scrapie agent. Biochem Biophys Res Commun 22:278-284

    PubMed  CAS  Google Scholar 

  • 4. Alper T, Cramp WA, Haig DA, Clarke MC (1967) Does the agent of scrapie replicate without nucleic acid? Nature 214:764-766

    PubMed  CAS  Google Scholar 

  • 5. Balbirnie M, Grothe R, Eisenberg DS (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated b-sheet structure for amyloid. Proc Natl Acad Sci USA 98:2375-2380

    PubMed  CAS  Google Scholar 

  • 6. Balgerie A, Dos Reis S, Ritter C, Chaignepain S, Coulary-Salin B, Forge V, Bathany, K, Lascu I, Schmitter JM, Riek R, Saupe SJ (2003) Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. EMBO J 22:2071-2081

    Google Scholar 

  • 7. Baskakov IV (2004) Autocatalytic conversion of recombinant prion proteins displays a species barrier. J Biol Chem 279:7671-7677

    PubMed  CAS  Google Scholar 

  • 8. Bessen RA, March RF (1994) Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J Virol 68:7859-7868

    PubMed  CAS  Google Scholar 

  • 9. Beisson-Schecroun J (1962) Incompatibilité cellulaire et intéractions nucléo-cytoplasmiques dans les phénomènes de barrage chez Podospora anserina. Ann Genet 4:3-50

    Google Scholar 

  • 10. Billeter M, Riek R, Wider G, Hornemann S, Glockshuber R, Wuthrich K (1997) Prion protein NMR structure and species barrier for prion diseases. Proc Natl Acad Sci USA 94:7281-7285

    PubMed  CAS  Google Scholar 

  • 11. Bolton DC, McKinley MP, Prusiner SB(1982) Identification of a protein that purifies with scrapie prion. Science 218:1309-1311

    PubMed  CAS  Google Scholar 

  • 12. Borchelt DR, Scott M, Taraboulos A, Stahl N, Prusiner SB (1990) Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J Cell Biol 110:743-752

    PubMed  CAS  Google Scholar 

  • 13. Bosque PJ, Ryou C, Telling G, Peretz D, Legname G, DeArmond SJ, Prusiner SB (2002) Prion in skeletal muscle. Pro Natl Acad Sci USA 99:3812-3817

    CAS  Google Scholar 

  • 14. Bousset L, Belrhali H, Janin J, Melki R, Morera S (2001) Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae. Structure 9:39-46

    PubMed  CAS  Google Scholar 

  • 15. Bousset L, Thomson NH, Radford SE, Melki R (2002) The yeast prion Ure2p retains its native alpha-helical conformation upon assembly into protein fibrils in vitro. EMBO J 21:2903-2911

    PubMed  CAS  Google Scholar 

  • 16. Bousset L, Briki F, Doucet J, Melki R (2003) The native-like conformation of Ure2p in fibrils assembled under physiologically relevant conditions switches to an amyloid-like conformation upon heat-treatment of the fibrils. J Struct Biol 141:132-142

    PubMed  CAS  Google Scholar 

  • 17. Bousset L, Redeker V, Decottignies P, Dubois S, Le Marechal P, Melki R (2004) Structural characterization of the fibrillar form of the yeast Saccharomyces cerevisiae prion Ure2p. Biochemistry 43:5022-5032

    PubMed  CAS  Google Scholar 

  • 18. Brown DR, Wong BS, Hafiz F, Clive C, Haswell SJ, Jones IM (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem J 344:1-5

    PubMed  CAS  Google Scholar 

  • 19. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) The cellular prion protein binds copper in vivo. Nature 390:684-687

    PubMed  CAS  Google Scholar 

  • 20. Bruce ME (1993) Scrapie strain variation and mutation. Brit Med Bull 49:822-838

    PubMed  CAS  Google Scholar 

  • 21. Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73:1339-1347

    PubMed  CAS  Google Scholar 

  • 22. Calzolai L, Lysek DA, Guntert P, von Schroetter C, Riek R, Zahn R, Wuthrich K (2000) NMR structures of three single-residue variants of the human prion protein. Proc Natl Acad Sci USA 97:8340-8345

    PubMed  CAS  Google Scholar 

  • 23. Cantor CR, Schimmel PR (2001) Biophysical Chemistry, twelfth printing. WH Freeman and Co. New York pp 409-431

    Google Scholar 

  • 24. Carrell RW, Gooptu B (1998) Conformational changes and disease–serpins, prions, and Alzheimer's. Curr Opin Struct Biol 8:799-809

    PubMed  CAS  Google Scholar 

  • 25. Caughey B (2003) Prion protein conversions: insight into mechanisms, TSE transmission barriers and strains. Br Med Bull 66:109-120

    PubMed  CAS  Google Scholar 

  • 26. Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS (1991) Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy. Biochemistry 30:7672-7680

    PubMed  CAS  Google Scholar 

  • 27. Caughey B, Raymond GJ, Bessen RA (1998) Strain dependent differences in beta-sheet conformations of abnormal prion protein. J Biol Chem 273:32230-32235

    PubMed  CAS  Google Scholar 

  • 28. Chernoff YO, Derkatch IL, Inge-Vechtomov SG (1993) Multicopy SUP35 gene induces de novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet 24:268-270

    PubMed  CAS  Google Scholar 

  • 29. Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268:880-884

    PubMed  CAS  Google Scholar 

  • 30. Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD (1999) Evidence for a protein mutator in yeast: Role of Hsp70-related chaperone Ssb in formation, stability and toxicity of the [PSI+] prion. Mol Cell Biol 19:8103-8112

    PubMed  CAS  Google Scholar 

  • 31. Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD (1999) Evidence for a protein mutator in yeast: Role of Hsp70-related chaperone Ssb in formation, stability and toxicity of the [PSI+] prion. Mol Cell Biol 19:8103-8112

    PubMed  CAS  Google Scholar 

  • 32. Chesebro B, Race R, Wehrly K, Nishio J, Bloom M, Lechner D, Bergstrom S, Robbins K, Mayer L, Keith JM, et al. (1985) Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature 315:331-333

    PubMed  CAS  Google Scholar 

  • 33. Chien P, DePace AH, Collins SR, Weissman JS (2003) Generation of prion transmission barriers by mutational control of amyloid conformations. Nature 424:948-951

    PubMed  CAS  Google Scholar 

  • 34. Chien P, Weissman JS (2001) Conformational diversity in a yeast prion dictates its seeding specificity. Nature 410:223-227

    PubMed  CAS  Google Scholar 

  • 35. Cohen FE, Pan KM, Huang Z, Baldwin M, Fletterick RJ, Prusiner SB (1994) Structural clues to prion replication. Science 264:530-531

    PubMed  CAS  Google Scholar 

  • 36. Coschigano PM, Magasanik B (1991) The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione-S-transferases. Mol Cell Biol 11:822-832

    PubMed  CAS  Google Scholar 

  • 37. Courchesne WE, Magasanik B (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: Roles of the URE2 and GLN3 genes. J Bacteriol 170:708-713

    PubMed  CAS  Google Scholar 

  • 38. Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94:9773-9778

    PubMed  CAS  Google Scholar 

  • 39. Cox BS (1965) PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20:505-521

    Google Scholar 

  • 40. Cox BS, Ness F, Tuite MF (2003) Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics 165:23-33

    PubMed  CAS  Google Scholar 

  • 41. Cox BS, Tuite MF, McLaughlin CS (1988) The Psi factor of yeast: A problem in inheritance. Yeast 4:159-179

    PubMed  CAS  Google Scholar 

  • 42. Cuille J, Chelle PL (1936) Pathologie animale. La maladie dite tremblante du mouton est-elle inoculable? C R Acad Sci (Paris) 203:1552-1554

    Google Scholar 

  • 43. Davies SW, Beardsall K, Turmaine M, DiFiglia M, Aronin N, Bates GP (1998) Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disorders with polyglutamine-repeat expansions? Lancet 351:131-133

    PubMed  CAS  Google Scholar 

  • 44. DePace AH, Weissman JS (2002) Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. Nat Struct Biol 9:389-396

    PubMed  CAS  Google Scholar 

  • 45. Deleault NR, Lucassen RW, Supattapone S (2003) RNA molecules stimulate prion protein conversion. Nature 425:717-720

    PubMed  CAS  Google Scholar 

  • 46. Deleu C, Clavé C, Bégueret J (1993) A single amino acid difference is sufficient to elicit vegetative incompatibility in the fungus Podospora anserina. Genetics 135:45-52

    PubMed  CAS  Google Scholar 

  • 47. Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144:1375-1386

    PubMed  CAS  Google Scholar 

  • 48. Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman S (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147:507-519

    PubMed  CAS  Google Scholar 

  • 49. Derkatch IL, Bradley ME, Masse SV, Zadorsky SP, Polozkov GV, Inge-Vechtomov SG, Liebman SW (2000) Dependence and independence of [PSI(+)] and [PIN(+)]: a two-prion system in yeast? EMBO J 19:1942-1952

    PubMed  CAS  Google Scholar 

  • 50. Derkatch IL, Bradley ME, Hong JY, Liebman SW (2001) Prions affect the appearance of other prions: the story of [PIN(+)]. Cell 106:171-182

    PubMed  CAS  Google Scholar 

  • 51. Diringer H, Gelderblom H, Hilmert H, Ozel M, Edelbluth C, Kimberlin RH (1983) Scrapie infectivity, fibrils and low molecular weight protein. Nature 306:476-478

    PubMed  CAS  Google Scholar 

  • 52. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329-332

    PubMed  CAS  Google Scholar 

  • 53. Donne DG, Viles JH, Groth D, Mehlhorn I, James TL, Cohen FE, Prusiner SB, Wright PE, Dyson HJ (1997) Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc Natl Acad Sci USA 94:13452-13457

    PubMed  CAS  Google Scholar 

  • 54. Dos Reis S, Coulary-Salin B, Forge V, Lascu I, Begueret J, Saupe SJ (2002) The HET-s prion protein of the filamentous fungus Podospora anserina aggregates in vitro into amyloid-like fibrils. J Biol Chem 277:5703-5706

    Google Scholar 

  • 55. Eberl H, Tittmann P, Glockshuber R (2004) Characterization of recombinant, membrane-attached full-length prion protein. J Biol Chem 279:25058-25065

    PubMed  CAS  Google Scholar 

  • 56. Enari M, Flechsig E, Weissmann C (2001) Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc Natl Acad Sci USA 98:9295-9299

    PubMed  CAS  Google Scholar 

  • 57. Endo T, Groth D, Prusiner SB, Kobata A (1989) Diversity of oligosaccharide structures linked to asparagines of the scrapie prion protein. Biochemistry 28:8380-8388

    PubMed  CAS  Google Scholar 

  • 58. Fay N, Inoue Y, Bousset L, Tagich H, Melki R (2003) Assembly of the yeast prion Ure2p into protein fibrils: Thermodynamic and kinetic characterization. J Biol Chem 278:30199-30205

    PubMed  CAS  Google Scholar 

  • 59. Fernandez-Bellot E, Guillemet E, Cullin C (2000) The yeast prion [URE3] can be greatly induced by a functional mutated URE2 allele. EMBO J 19:3215-3222

    PubMed  CAS  Google Scholar 

  • 60. Gajdusek DC (1988) Transmissible and non-transmissible amyloidoses: Autocatalyticv post-translational conversion of host precursor proteins to ß-pleated conformations. J Neuroimmunol 20:95-110

    PubMed  CAS  Google Scholar 

  • 61. Glass NL, Jacobson DJ, Shiu PK (2000) The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu Rev Genet 34:165-186

    PubMed  CAS  Google Scholar 

  • 62. Glover JR, Kowal AS, Schirmer EC, Patino MM, Liu JJ, Lindquist S (1997) Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89:811-819

    PubMed  CAS  Google Scholar 

  • 63. Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73-82

    PubMed  CAS  Google Scholar 

  • 64. Gregoire C, Marco S, Thimonier J, Duplan L, Laurine E, Chauvin JP, Michel B, Peyrot V, Verdier JM (2001) Three-dimensional structure of the lithostathine protofibril, a protein involved in Alzheimer's disease. EMBO J 20:3313-3321

    PubMed  CAS  Google Scholar 

  • 65. Griffith JS (1967) Self-replication and scrapie. Nature 215:1043-1044

    PubMed  CAS  Google Scholar 

  • 66. Hadlow WJ (1959) Scrapie and Kuru. Lancet 2:289-290

    Google Scholar 

  • 67. Hawthorne DC, Mortimer RK (1968) Genetic mapping of nonsense suppressors in yeast. Genetics 60:735-742

    PubMed  CAS  Google Scholar 

  • 68. Hershko A, Ciechanover A (1998) The ubiquitin system for protein degradation. Annu Rev Biochem 61:761-807

    Google Scholar 

  • 69. Hill AF, Antoniou M, Collinge J (1999) Protease-resistant prion protein produced in vitro lacks detectable infectivity. J Gen Virol 80:11-14

    PubMed  CAS  Google Scholar 

  • 70. Hill AF, Zeidler, M, Ironside J, Collinge J (1997) Diagnosis of new variant Creutzfeldt-Jakob disease by tonsil biopsy. Lancet 349:99-100

    PubMed  CAS  Google Scholar 

  • 71. Horwich AL, Weissman JS (1997) Deadly conformations Protein misfolding in prion disease. Cell 89:499-510

    PubMed  CAS  Google Scholar 

  • 72. Hundt C, Peyrin JM, Haik S, Gauczynski S, Leucht C, Rieger R, Riley ML, Deslys JP, Dormont D, Lasmezas CI, Weiss S (2001) Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J 20:5876-5886

    PubMed  CAS  Google Scholar 

  • 73. Huntington JA, Pannu NS, Hazes B, Read RJ, Lomas DA, Carrell RW (1999) A 2.6Å structure of a serpin polymer and implications for conformational disease. J Mol Biol 293:449-455

    PubMed  CAS  Google Scholar 

  • 74. Inge-Vechtomov SG, Andrianova VM (1970) Recessive super-suppressors in yeast. Genetika 6:103-115

    Google Scholar 

  • 75. Inoue Y, Kishimoto A, Hirao J, Yoshida M, Taguchi H (2001) Strong growth polarity of yeast prion fiber revealed by single fiber imaging. J Biol Chem 276:35227-35230

    PubMed  CAS  Google Scholar 

  • 76. Jackson GS, Hosszu LL, Power A, Hill AF, Kenney J, Saibil H, Craven CJ, Waltho JP, Clarke AR, Collinge J (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283:1935-1937

    PubMed  CAS  Google Scholar 

  • 77. James TL, Liu H, Ulyanov NB, Farr-Jones S, Zhang H, Donne DG, Kaneko K, Groth D, Mehlhorn I, Prusiner SB, Cohen FE (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci USA 94:10086-10091

    PubMed  CAS  Google Scholar 

  • 78. Jarret JT, Lansbury PT (1993) Seeding ”one-dimensional-crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73:1055-1058

    Google Scholar 

  • 79. Jiang Y, Li H, Zhu L, Zhou JM, Perrett S (2004) Amyloid nucleation and hierarchical assembly of Ure2p fibrils: role of asparagine/glutamine repeat and nonrepeat regions of the prion domain. J Biol Chem 279:3361-3369

    PubMed  CAS  Google Scholar 

  • 80. Jimenez JL, Guijarro JI, Orlova E, Zurdo J, Dobson CM, Sunde M, Saibil HR (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 18:815-821

    PubMed  CAS  Google Scholar 

  • 81. Jin T, Gu Y, Zanusso G, Sy M, Kumar A, Cohen M, Gambetti P, Singh N (2000) The chaperone protein BiP binds to a mutant prion protein and mediates its degradation by the proteasome. J Biol Chem 275:38699-38704

    PubMed  CAS  Google Scholar 

  • 82. Jones GW, Masison DC (2003) Saccharomyces cerevisiae Hsp70 mutations affect [PSI+] prion propagation and cell growth differently and implicate Hsp40 and tetratricopeptide repeat cochaperones in impairment of [PSI+]. Genetics 163:495-506

    PubMed  CAS  Google Scholar 

  • 83. King CY (2001) Supporting the structural basis of prion strains: Induction and identification of [PSI] variants. J Mol Biol 307:1247-1260

    PubMed  CAS  Google Scholar 

  • 84. King CY and Diaz-Avalos R (2004) Protein-only transmission of three yeast prion strains. Nature 428:319-323

    PubMed  CAS  Google Scholar 

  • 85. Knaus KJ, Morillas M, Swietnicki W, Malone M, Surewicz WK, Yee VC (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol 8:770-774

    PubMed  CAS  Google Scholar 

  • 86. Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, Caughey B (1994) Cell-free formation of protease-resistant prion protein. Nature 370:471-474

    PubMed  CAS  Google Scholar 

  • 87. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524-530

    PubMed  CAS  Google Scholar 

  • 88. Kurschner C, Morgan JI (1996) Analysis of interaction sites in homoand heteromeric complexes containing Bcl-2 family members and the cellular prion protein. Brain Res Mol Brain Res 37:249-258

    PubMed  CAS  Google Scholar 

  • 89. Kushnirov VV, Ter-Avanesyan MD (1998) Structure and replication of yeast prions. Cell 94:13-16

    PubMed  CAS  Google Scholar 

  • 90. Kushnirov VV, Ter-Avanesyan MD, Telckov MV, Surguchov AP, Smirnov VN, Inge-Vechtomov SG (1988) Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene 66:45-54

    PubMed  CAS  Google Scholar 

  • 91. Lacroute F (1971) Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J Bacteriol 106:519-522

    PubMed  CAS  Google Scholar 

  • 92. Lee S, Eisenberg D (2003) Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process. Nat Struct Biol 10:725-730

    PubMed  CAS  Google Scholar 

  • 93. Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science 305:673-676

    PubMed  CAS  Google Scholar 

  • 94. Li L, Lindquist S (2000) Creating a protein-based element of inheritance. Science 287:661-664

    PubMed  CAS  Google Scholar 

  • 95. Liemann S, Glockshuber R (1999) Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry 38:3258-3267

    PubMed  CAS  Google Scholar 

  • 96. Liu H, Farr-Jones S, Ulyanov NB, Llinas M, Marqusee S, Groth D, Cohen FE, Prusiner SB, James TL (1999) Solution structure of Syrian hamster prion protein rPrP(90-231). Biochemistry 38:5362-5377

    PubMed  CAS  Google Scholar 

  • 97. Liu Y, Gotte G, Libonati M, Eisenberg D (2001) A domain-swapped RNase A dimer with implications for amyloid formation. Nat Struct Biol 8:211-214

    PubMed  CAS  Google Scholar 

  • 98. Liu JJ, Lindquist S (1999) Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast. Nature 400:573-576

    PubMed  CAS  Google Scholar 

  • 99. Lomas DA, Carrell RW (2002) Serpinopathies and the conformational dementias. Nat Rev Genet 3:759-768

    PubMed  CAS  Google Scholar 

  • 100. Lopez Garcia F, Zahn R, Riek R, Wuthrich K (2000) NMR structure of the bovine prion protein. Proc Natl Acad Sci USA 97:8334-8339

    Google Scholar 

  • 101. Lund PM, Cox BS (1981) Reversion analysis of [psi] mutations in Saccharomyces cerevisiae. Genet Res 37:173-182

    PubMed  CAS  Google Scholar 

  • 102. Ma J, Lindquist S (1999) De novo generation of a PrPSc-like conformation in living cells. Nat Cell Biol 1:358-361

    PubMed  CAS  Google Scholar 

  • 103. Maddelein ML, Dos Reis S, Duvezin-Caubet S, Coulary-Salin B, Saupe SJ (2002) Amyloid aggregates of the HET-s prion protein are infectious. Proc Natl Acad Sci USA 99:7402-7407

    PubMed  CAS  Google Scholar 

  • 104. Masel J, Jansen VAA, Nowak MA (1999) Quantifying the kinetic parameters of prion replication. Biophys Chem 77:139-152

    PubMed  CAS  Google Scholar 

  • 105. Masison DC, Wickner RB (1995) Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270:93-95

    PubMed  CAS  Google Scholar 

  • 106. Meier P, Genoud N, Prinz M, Maissen M, Rulicke T, Zurbriggen A, Raeber AJ, Aguzzi A (2003) Soluble dimeric prion protein binds PrP(Sc) in vivo and antagonizes prion disease. Cell 113:49-60

    PubMed  CAS  Google Scholar 

  • 107. Michelitsch MD, Weissman, JS (2000) A census of glutamine/asparagine-rich regions: Implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci USA 97:11910-11915

    PubMed  CAS  Google Scholar 

  • 108. Mitchell AP, Magasanik B (1984) Regulation of glutamine-repressible gene products by GLN3 function in Saccharomyces cerevisiae. Mol Cell Biol 4:2758-2766

    PubMed  CAS  Google Scholar 

  • 109. Moriyama H, Edskes HK, Wickner RB (2000) [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol Cell Biol 20:8916-8922

    PubMed  CAS  Google Scholar 

  • 110. Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, Launay JM, Kellermann O (2000) Signal transduction through prion protein. Science 289:1925-1928

    PubMed  CAS  Google Scholar 

  • 111. Nazabal A, Dos Reis S, Bonneu M, Saupe SJ, Schmitter JM (2004) Conformational transition occuring upon amyloid aggregation of the HET-s prion protein of Podospora anserina analyzed by Hydrogen/Deuterium exchange and mass spectrometry. Biochemistry 42:8852-8861

    Google Scholar 

  • 112. Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO (1999) Antagonistic interaction between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol 19:1325-1333

    PubMed  CAS  Google Scholar 

  • 113. Oesch B, Teplow DB, Stahl N, Serban D, Hood LE, Prusiner SB (1990) Identification of cellular proteins binding to the scrapie prion protein. Biochemistry 29:5848-5855

    PubMed  CAS  Google Scholar 

  • 114. Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE, et al.(1985) A cellular gene encodes scrapie PrP 27-30 protein. Cell 40:735-746

    PubMed  CAS  Google Scholar 

  • 115. Osherovich LZ, Weissman JS (2001) Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Cell106:183-194

    Google Scholar 

  • 116. Pan KM, Stahl N, Prusiner SB (1992) Purification and properties of the cellular prion protein from Syrian hamster brain. Protein Sci 1:1343-1352

    PubMed  CAS  Google Scholar 

  • 117. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, Prusiner SB (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:10962-10966

    PubMed  CAS  Google Scholar 

  • 118. Patino MM, Liu JJ, Glover JR, Lindquist S (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622-626

    PubMed  CAS  Google Scholar 

  • 119. Perutz MF (1999) Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem Sci 24:58-63

    PubMed  CAS  Google Scholar 

  • 120. Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 91:5355-5358

    PubMed  CAS  Google Scholar 

  • 121. Perutz MF, Pope BJ, Owen D, Wanker EE, Scherzinger E (2002) Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid b-peptide of amyloid plaques. Proc Natl Acad Sci USA 99:5596-5600

    PubMed  CAS  Google Scholar 

  • 122. Prusiner SB(1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136-144

    PubMed  CAS  Google Scholar 

  • 123. Prusiner SB (1991) Molecular biology of prion diseases. Science 252:1515-1522

    PubMed  CAS  Google Scholar 

  • 124. Prusiner SB (1997) Prion diseases and the BSE crisis. Science 278:245-251

    PubMed  CAS  Google Scholar 

  • 125. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363-13383

    PubMed  CAS  Google Scholar 

  • 126. Prusiner SB, Groth DF, Cochran SP, Masiarz FR, McKinley MP, Martinez HM (1980) Molecular properties, partial purification, and assay by incubation period measurements of the hamster scrapie agent. Biochemistry 19:4883-4891

    PubMed  CAS  Google Scholar 

  • 127. Prusiner SB, McKinley MP, Groth DF, Bowman KA, Mock NI, Cochran SP, Masiarz FR (1981) Scrapie agent contains a hydrophobic protein. Proc Natl Acad Sci USA 78:6675-6679

    PubMed  CAS  Google Scholar 

  • 128. Prusiner SB, Bolton DC, Groth DF, Bowman KA, Cochran SP, McKinley MP (1982) Further purification and characterization of scrapie prions. Biochemistry 26:6942-6950

    Google Scholar 

  • 129. Prusiner SB, McKinley MP, Bowman KA, Bolton DC, Bendheim PE, Groth DF, Glenner GG (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35:349-358

    PubMed  CAS  Google Scholar 

  • 130. Prusiner SB, Groth DF, Bolton DC, Kent SB, Hood LE (1984) Purification and structural studies of a major scrapie prion protein. Cell 38:127-34

    PubMed  CAS  Google Scholar 

  • 131. Raeber AJ, Brandner S, Klein MA, Benninger Y, Musahl C, Frigg R, Roeckl C, Fischer MB, Weissmann C, Aguzzi A (1998) Transgenic and knockout mice in research on prion diseases. Brain Pathol 8:715-733

    PubMed  CAS  Google Scholar 

  • 132. Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP(121-321). Nature 382:180-182

    PubMed  CAS  Google Scholar 

  • 133. Riek R, Hornemann S, Wider G, Glockshuber R, Wuthrich K (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett 413:282-288

    PubMed  CAS  Google Scholar 

  • 134. Riek R, Wider G, Billeter M, Hornemann S, Glockshuber R, Wuthrich K (1998) Prion protein NMR structure and familial human spongiform encephalopathies. Proc Natl Acad Sci USA 95:11667-11672

    PubMed  CAS  Google Scholar 

  • 135. Rochet JC, Lansbury PT Jr (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60-68

    PubMed  CAS  Google Scholar 

  • 136. Rudd PM, Endo T, Colominas C, Groth D, Wheeler SF, Harvey DJ, Wormald MR, Serban H, Prusiner SB, Kobata A, Dwek RA (1999) Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc Natl Acad Sci USA 96:13044-13049

    PubMed  CAS  Google Scholar 

  • 137. Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810-813

    PubMed  CAS  Google Scholar 

  • 138. Safar J, Roller PP, Gajdusek DC, Gibbs CJ Jr (1993) Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity. Protein Sci 2:2206-2216

    PubMed  CAS  Google Scholar 

  • 139. Sakudo A, Lee DC, Yoshimura E, Nagasaka S, Nitta K, Saeki K, Matsumoto Y, Lehmann S, Itohara S, Sakaguchi S, Onodera T (2004) Prion protein suppresses perturbation of cellular copper homeostasis under oxidative conditions. Biochem Biophys Res Commun 313:850-855

    PubMed  CAS  Google Scholar 

  • 140. Santoso A, Chien P, Osherovich LZ, Weissman JS (2000) Molecular basis of yeast prion species barrier. Cell 100:277-288

    PubMed  CAS  Google Scholar 

  • 141. Schlumpberger M, Wille H, Baldwin MA, Butler DA, Herskowitz I, Prusiner SB (2000) The prion domain of yeast Ure2p induces autocatalytic formation of amyloid fibers by a recombinant fusion protein. Prot Sci 9:440-451

    CAS  Google Scholar 

  • 142. Schoun J, Lacroute F (1969) Etude physiologique d'une mutation permettant l'incorporation d'acide ureidosuccinique chez la levure. C R Acad Sci (Paris) 269:1412-1414

    Google Scholar 

  • 143. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770-774

    PubMed  CAS  Google Scholar 

  • 144. Schlumpberger M, Prusiner SB, Herskowitz I (2001) Induction of distinct [URE3] yeast prion strains. Mol Cell Biol 21:7035-7046

    PubMed  CAS  Google Scholar 

  • 145. Scott M, Foster D, Mirenda C, Serban D, Coufal F, Walchli M, Torchia M, Groth D, Carlson G, DeArmond SJ, Prusiner SB (1989) Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59:847-857

    PubMed  CAS  Google Scholar 

  • 146. Scott MR, Will R, Ironside J, Nguyen HO, Tremblay P, DeArmond SJ, Prusiner SB (1999) Compelling transgenetic evidence for transmission of bovine spongiform encephalopathy prions to humans. Proc Natl Acad Sci USA 96:15137-15142

    PubMed  CAS  Google Scholar 

  • 147. Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289:1317-1321

    PubMed  CAS  Google Scholar 

  • 148. Shmerling D, Hegyi I, Fischer M, Blättler T, Brandner S, Götz J, Rülicke T, Flechsig E, Cozzio A, von Mering C, Hangartner C, Aguzzi A, Weissmann C (1998) Expression of amino-terminally truncated PrP in mouse leading to ataxia and specific cerebellar lesions. Cell 93:203-214

    PubMed  CAS  Google Scholar 

  • 149. Singh A, Helms C, Sherman F (1979) Mutation of the non-Mendelian suppressor, Psi+, in yeast by hypertonic media. Proc Natl Acad Sci USA 76:1952-1956

    PubMed  Google Scholar 

  • 150. Sipe JD, Cohen AS (2000) History of the amyloid fibril. J Struct Biol130:88-98

    Google Scholar 

  • 151. Sondheimer N, Lindquist S( 2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 5:63-172

    Google Scholar 

  • 152. Sondheimer N, Lopez N, Craig EA, Lindquist S (2001) The role of Sis1 in the maintenance of the [RNQ+] prion. EMBO J 20:2435-2442

    PubMed  CAS  Google Scholar 

  • 153. Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51:229-240

    PubMed  CAS  Google Scholar 

  • 154. Stahl N, Borchelt DR, Prusiner SB (1990) Differential release of cellular and scrapie prion proteins from cellular membranes by phosphatidylinositol-specific phospholipase C. Biochemistry 29:5405-5412

    PubMed  CAS  Google Scholar 

  • 155. Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL, Prusiner SB (1993) Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32:1991-2002

    PubMed  CAS  Google Scholar 

  • 156. Stamp JT (1962) Scrapie. A transmissible disease of sheep. Vet Rec 74:357-362

    Google Scholar 

  • 157. Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF (1995)The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 14:4365-4373

    PubMed  CAS  Google Scholar 

  • 158. Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678-699

    PubMed  CAS  Google Scholar 

  • 159. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729-739

    PubMed  CAS  Google Scholar 

  • 160. Swietnicki W, Morillas M, Chen SG, Gambetti P, Surewicz WK (2000) Aggregation and fibrillization of the recombinant human prion protein huPrP90-231. Biochemistry 39:424-431

    PubMed  CAS  Google Scholar 

  • 161. Tanaka M, Chien P, Naber N, Cooke R, Weissman JS (2004) Conformational variations in an infectious protein determine prion strain differences. Nature 428:323-328

    PubMed  CAS  Google Scholar 

  • 162. Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296:1991-1995

    PubMed  CAS  Google Scholar 

  • 163. Taylor KL, Cheng N, Williams RW, Steven AC, Wickner RB (1999) Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283:1339-1343

    PubMed  CAS  Google Scholar 

  • 164. Telling GC, Scott M, Mastrianni J, Gabizon R, Torchia M, Cohen FE, DeArmond SJ, Prusiner SB (1995) Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83:79-90

    PubMed  CAS  Google Scholar 

  • 165. Ter-Avanesyan MD, Kushnirov VV, Dagkesamanskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG, Smirnov VN (1993) Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 7:683-692

    PubMed  CAS  Google Scholar 

  • 166. Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137:1339-1343

    Google Scholar 

  • 167. Thual C, Komar AA, Bousset L, Fernandez-Bellot E, Cullin C, Melki R (1999) Structural characterization of Saccharomyces cerevisiae prion-like protein Ure2. J Biol Chem 274:13666-13674

    PubMed  CAS  Google Scholar 

  • 168. Thual C, Bousset L, Komar A A, Walter S, Buchner J, Cullin C, Melki R (2001) Stability, folding, dimerization, and assembly properties of the yeast prion Ure2p. Biochemistry 40:1764-1773

    PubMed  CAS  Google Scholar 

  • 169. Torrent J, Alvarez-Martinez MT, Harricane MC, Heitz F, Liautard JP, Balny C, Lange R (2004) High pressure induces scrapie-like prion protein misfolding and amyloid fibril formation. Biochemistry 43:7162-7170

    PubMed  CAS  Google Scholar 

  • 170. True HL, Lindquist SL (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477-483

    PubMed  CAS  Google Scholar 

  • 171. Tuite MF (2000) Yeast prions and their prion-forming domain. Cell 100:289-292

    PubMed  CAS  Google Scholar 

  • 172. Tuite MF, Cox BS (2003) Propagation of yeast prions. Nat Rev Mol Cell Biol 4:878-889

    PubMed  CAS  Google Scholar 

  • 173. Tuite MF, Mundy CR, Cox BS (1981) Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics 98:691-711

    PubMed  CAS  Google Scholar 

  • 174. Turcq B, Deleu C, Denayrolles M, Bégueret J (1991) Two allelic genes responsible for vegetative incompatibility in the fungus Podospora anserina are not essential for cell viability. Mol Gen Genet 228:3-6

    Google Scholar 

  • 175. Turk E, Teplow DB, Hood LE, Prusiner SB (1988) Purification and properties of the cellular and scrapie hamster prion proteins. Eur J Biochem 176:21-30

    PubMed  CAS  Google Scholar 

  • 176. Uptain SM, Sawicki GJ, Caughey B, Lindquist S (2001) Strains of [PSI+] are distinguished by their efficiencys of prion-mediated conformational conversion. EMBO J 20:6236-6245

    PubMed  CAS  Google Scholar 

  • 177. Viles JH, Cohen FE, Prusiner SB, Goodin DB, Wright PE, Dyson HJ (1999) Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci USA 96:2042-2047

    PubMed  CAS  Google Scholar 

  • 178. Wadsworth JDF, Joiner S, Hill AF Campbell TA, Desbruslais M, Luthert PJ, Collinge J (2001) Tissue distribution of protease resistant protein in variant CJD using a highly sensitive immunoblotting assay. Lancet 358:171-180

    PubMed  CAS  Google Scholar 

  • 179. Weissmann C, Raeber AJ, Shmerling D, Aguzzi A, Manson JC (1999) In Prion Biology and Diseases, SB Prusiner ed. (Cold Spring Harbor, NY). Cold Spring Harbor Laboratory Press 229-272

    Google Scholar 

  • 180. Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, Ikeda S, Masters CL, Merlini G, Saraiva MJ, Sipe JD (2002) Amyloid fibril protein nomenclature - 2002. Amyloid 9:197-200

    PubMed  CAS  Google Scholar 

  • 181. Wickner RB (1994) Evidence for a prion analog in S. cerevisiae: the [URE3] non-Mendelian genetic element as an altered URE2 protein. Science 264:566-569

    PubMed  CAS  Google Scholar 

  • 182. Xu S, Bevis B, Arnsdorf MF (2001) The assembly of amyloidogenic yeast Sup35 as assessed by scanning (atomic) force microscopy: An analogy to linear colloidal aggregation? Biophys J 81:446-454

    PubMed  CAS  Google Scholar 

  • 183. Yehiely F, Bamborough P, Da Costa M, Perry BJ, Thinakaran G, Cohen FE, Carlson GA, Prusiner SB (1997) Identification of candidate proteins binding to prion protein. Neurobiol 3:339-355

    CAS  Google Scholar 

  • 184. Zahn R, Liu A, Luhrs T, Riek R, von Schroetter C, Lopez Garcia F, Billeter M, Calzolai L, Wider G, Wuthrich K (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci USA 97:145-150

    PubMed  CAS  Google Scholar 

  • 185. Zhang Y, Swietnicki,W, Zagorski MG, Surewicz WK, Sonnichsen F (2000) Solution structure of the E200K variant of human prion protein. Implications for the mechanism of pathogenesis in familial prion diseases. J Biol Chem 275:33650-33654

    PubMed  CAS  Google Scholar 

  • 186. Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M (1995) Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 14:4065-4072

    PubMed  CAS  Google Scholar 

  • 187. Zurdo J, Guijarro JI, Dobson CM (2001) Preparation and characterization of purified amyloid fibrils. J Am Chem Soc 123:8141-8142

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ineke Braakman

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Bousset, L., Fay, N., Melki, R. Template-induced protein misfolding underlying prion diseases. In: Braakman, I. (eds) Chaperones. Topics in Current Genetics, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_107

Download citation

Publish with us

Policies and ethics