Skip to main content

Metal immobilization: where and how?

  • Chapter
  • First Online:
Molecular Biology of Metal Homeostasis and Detoxification

Part of the book series: Topics in Current Genetics ((TCG,volume 14))

Abstract

Metal immobilization away from metabolically active sites within the cell represents the last step in both the homeostasis of metals and the detoxification of metal in excess. Assessment of the importance of this step requires having access to the in vivo speciation of metals. Evolving techniques have made it possible to acquire more reliable in situ profiling of: (i) spatio-temporal accumulation of metal, (ii) characterization of the metal-ligands complexes and determination of the structure of the different bio-ligands involved. The chapter ”metal immobilization: where and how?” presents the role of different metal-chelators in plants, based on examples from works using non-invasive techniques and genetic approaches at both the whole plant, cellular and subcellular levels. The aim of the chapter is to give a survey of the key molecules and processes involved in metal immobilization in plants, on the basis of direct and robust evidences of the in vivo speciation of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Barcelo J, Poschenrieder C (1999) Structural and ultrastructural changes in heavy metal exposed plants. In: Prasad MNV, Hagemeyr J (Eds) Heavy metal stress in plants. Springer-Verlag, Berlin, Heidelberg, pp 183-205

    Google Scholar 

  • 2. Barnes A, Constantinidou C, Ashton P, Jones A, Pritchard J (2004) Determining protein identity from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. J Exp Bot 55:1473-1481

    Article  PubMed  CAS  Google Scholar 

  • 3. Becher M, Talke IN, Krall L, Krämer U (2003) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251-268

    Article  Google Scholar 

  • 4. Blamey FPC, Joyce DC, Edwards DG, Asher CJ (1986) Role of trichomes in sunflower tolerance to manganese toxicity. Plant Soil 91:171-180

    Article  CAS  Google Scholar 

  • 5. Boominathan R, Doran PM (2003) Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J Biotechnol 101:131-146

    Article  PubMed  CAS  Google Scholar 

  • 6. Chen JJ, Zhou JM, Goldsbrough PB (1997) Characterization of phytochelatin synthase from tomato. Physiol Plant 101:165-172

    Article  CAS  Google Scholar 

  • 7. Choi Y-E, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45-50

    Article  PubMed  CAS  Google Scholar 

  • 8. Clarkson DT (1993) Roots and the delivery of solutes to the xylem. Phil Trans Royal Soc London, series B 341:5-17

    Google Scholar 

  • 9. Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325-3333

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 10. Clemens S, Palmgren M, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309-315

    Article  PubMed  CAS  Google Scholar 

  • 11. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159-182

    Article  PubMed  CAS  Google Scholar 

  • 12. Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716-723

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 13. De la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plant by alteration of citrate synthesis. Science 276:1566-1568

    Article  Google Scholar 

  • 14. de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159-1168

    Article  Google Scholar 

  • 15. Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) (I. Uptake and distribution of aluminum in root apices). Plant Physiol 103:685-693

    PubMed  CAS  PubMed Central  Google Scholar 

  • 16. Delhaize E, Hebb DM, Ryan PR (2001) Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol 125:2059-2067

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 17. Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249-15254

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 18. Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) (II. Aluminum-stimulated excretion of malic acid from root apices). Plant Physiol 103:695-702

    PubMed  CAS  PubMed Central  Google Scholar 

  • 19. Douchkov D, Gryczka C, Stephan UW, Hell R, Bäumlein H (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Env 28:365-374

    Article  CAS  Google Scholar 

  • 20. Finney LA, O'Halloran TV (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300:931-936

    Article  PubMed  CAS  Google Scholar 

  • 21. Foley RC, Singh KB (1994) Isolation of a Vicia faba metallothionein-like gene: expression in foliar trichomes. Plant Mol Biol 26:435-444

    Article  PubMed  CAS  Google Scholar 

  • 22. Frey B, Keller C, Zierold K, Schulin R (2000) Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 23:675-687

    Article  CAS  Google Scholar 

  • 23. Garcia-Hernandez M, Murphy A, Taiz L (1998) Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol 118:387-397

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 24. Gisbert C, Ros R, De Haro E, Walker DJ, Bernal MP, Serrano R, Navarro-Aviño (2003) A plant genetically modified that accumulates PBb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440-445

    Article  PubMed  CAS  Google Scholar 

  • 25. Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674-676

    Article  PubMed  CAS  Google Scholar 

  • 26. Grill E, Loffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific g-glutamylcysteine dipeptidyl transpeptidase (phytochelation synthase). Proc Natl Acad Sci USA 86:6838-6842

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 27. Ha S-B, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett C (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1-12

    Article  Google Scholar 

  • 28. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1-11

    Article  PubMed  CAS  Google Scholar 

  • 29. Heard PJ, Feeney KA, Allen GC, Shewry PR (2002) Determination of the elemental composition of mature wheat grain using a modified secondary ion mass spectrometer (SIMS). Plant J 30:237-245

    Article  PubMed  CAS  Google Scholar 

  • 30. Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa N-K, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471-479

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 31. Hill KA, Lion LW, Ahner BA (2002) Reduced Cd accumulation in Zea mays: a protective role for phytosiderophores? Environ Sci Technol 36:5363-5368

    Article  PubMed  CAS  Google Scholar 

  • 32. Howden R, Goldsbrough PB, Andersen CR, Cobbett C (1995) Cadmium sensitiven cad1, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059-1066

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 33. Kerkeb L, Krämer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716-724

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 34. Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D (2000) Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol 41:1030-1037

    Article  PubMed  CAS  Google Scholar 

  • 35. Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localisation and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343-1353

    Article  Google Scholar 

  • 36. Küpper H, Lombi E, Zhao F-J, McGrath S (2000) Cellular compartmentation of cadmium and zinc in t-relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75-84

    Article  Google Scholar 

  • 37. Küpper H, Lombi E, Zhao F-J, Wieshammer G, McGrath S (2001) Cellular compartmentation of nickel in the hyperaccumlators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291-2300

    Article  Google Scholar 

  • 38. Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck P (2004 Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134: 748-757

    Article  Google Scholar 

  • 39. Lavid N, Barkay Z, Tel-Or E (2000) Accumulation of heavy metals in epidermal glands of the waterlily (Nymphaeaceae). Planta 212:323-322

    Article  Google Scholar 

  • 40. Lee S Moon JS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656-663

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 41. Lee S, Korban SS (2002) Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development. Planta 215:689-693

    Article  PubMed  CAS  Google Scholar 

  • 42. Li Y, Dhankher P, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787-1797

    Article  PubMed  CAS  Google Scholar 

  • 43. Li Z-S, Lu Y-P, Zhen R-G, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci USA 94:42-47

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 44. Liu D, Kottke I (2003) Subcellular localisation of cadmium in the root cells of Allium sativum by electron energy loss spectroscopy. J Biosci 28:471-478

    Article  PubMed  CAS  Google Scholar 

  • 45. Liu D, Kottke I (2004) Subcellular localization of copper in the root cells of Allium sativum by electron energy loss spectroscoy (EELS). Biores Technol 94:153-158

    Article  CAS  Google Scholar 

  • 46. Loeffler S, Hochberger A, Gril E, Winnacker E-L, Zenk M-H (1989) Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction products. FEBS Lett 258:42-46

    Article  CAS  Google Scholar 

  • 47. Ma JF, Furukawa J (2003) recent progress in the research of external Al detoxification in higher plants: a mini-review. J Inorganic Biochem 97:46-51

    Article  CAS  Google Scholar 

  • 48. Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycin peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145-1150

    PubMed  CAS  PubMed Central  Google Scholar 

  • 49. Marquès L, Cossegal M, Bodin S, Czernic P, Lebrun M (2004) Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, Arabidopsis halleri and Thlaspi caerulescens. New Phytol 164:286-295

    Google Scholar 

  • 50. Martell EA (1974) Radioactivity of tobacco trichomes and insoluble cigarette smoke particles. Nature 249:215-217

    Article  PubMed  CAS  Google Scholar 

  • 51. Mehra RK, Kodati R, Abdullah R (1995) Chain lenght-dependent Pb(II)-coordination in phytochelatins. Biochem Biophys Res Commun 215:730-736

    Article  PubMed  CAS  Google Scholar 

  • 52. Mehra RK, Miclat J, Kodati R, Abdullah R, Hunter TC, Mulchandani P (1996) Optical spectroscopic and reverse-phase HPLC analyses of Hg(II) binding to phytochelatins. Biochem J 314:73-82

    PubMed  CAS  PubMed Central  Google Scholar 

  • 53. Mehra RK, Mulchandani P, Hunter TC (1994) Role of CdS quantum crystallites in cadmium resistance in Candida glabrata. Biochem Biophys Res Commun 200:1193-1200

    Article  PubMed  CAS  Google Scholar 

  • 54. Maugenest S, Martinez I, Godin B, Perez P, Lescure AM (1999) Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Mol Biol 39:503-514

    Article  PubMed  CAS  Google Scholar 

  • 55. Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Plant Physiol 109:945-954

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 56. Morris CA, Nicolaus B, Sampson V, Harwood JL, Kille P (1999) Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus. Biochem J 338:553-560

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 57. Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491-3499

    PubMed  CAS  PubMed Central  Google Scholar 

  • 58. Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721-4728

    Article  PubMed  CAS  Google Scholar 

  • 59. Pianelli K, Mari S, Marquès L, Lebrun M, Czernic P (2005) Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Trans Res, in press

    Google Scholar 

  • 60. Pich A, Scholz G (1996) Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill): nicotianamine-stimulated copper transport in the xylem. J Exp Bot 47:41-47

    Article  CAS  Google Scholar 

  • 61. Pich A, Hillmer S, Manteuffel R, Scholz G (1997) First immuno-histochemical localization of the endogenous Fe2+ -chelator nicotianamine. J Exp Bot 48:759-767

    Article  CAS  Google Scholar 

  • 62. Psaras GK, Constantinidis TH, Cotsopoulos B, Manetas Y (2000) Relative abundance of nickel in the leaf epidermis of eight hyperaccumulators: evidence that the metal is excluded from both guard cells and trichomes. Annals Bot 86:73-78

    Article  CAS  Google Scholar 

  • 63. Punshon T, Jackson BP, Bertsch PM, Burger J (2004) Mass loading of nickel and uranium on plant surfaces: application of laser ablation-ICP-MS. J Environ Monit 6:153-159

    Article  PubMed  CAS  Google Scholar 

  • 64. Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113-1122

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 65. Rauser WE (1995) Phytochelatins and related peptides: structure, biosynthesis, and function. Plant Physiol 109:1141-1149

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 66. Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:19-48

    Article  PubMed  CAS  Google Scholar 

  • 67. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons, New York, pp 193-219

    Google Scholar 

  • 68. Robinson NJ, Wilson JR, Turner JS (1996) Expression of the type 2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn2+ -metallothionein-deficient Synechococcus PCC7942: putative role for MT2 in Zn2+ metabolism. Plant Mol Biol 30:1169-1179

    Article  PubMed  CAS  Google Scholar 

  • 69. Roosens NH, Bernard C, Leplae R, Verbruggen N (2004) Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Letters 577:9-16

    Article  PubMed  CAS  Google Scholar 

  • 70. Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annual Rev Plant Physiol Plant Mol Biol 52:527-560

    Article  CAS  Google Scholar 

  • 71. Salt DE, Krämer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons, New York, pp 231-246

    Google Scholar 

  • 72. Salt DE, Prince RC, Baker AJM, Raskin Y, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol 33:713-717

    Article  CAS  Google Scholar 

  • 73. Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in indian mustard. Plant Physiol 109:1427-1433

    PubMed  CAS  PubMed Central  Google Scholar 

  • 74. Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann J-L Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815-1828

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 75. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645-653

    Article  PubMed  CAS  Google Scholar 

  • 76. Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167-192

    Article  CAS  Google Scholar 

  • 77. Schaumlöffel D, Ouerdane L, Bouyssiere B, Lobinski R (2003) Speciation analysis of nickel in the latex of the tree Sebertia acuminata by HPLC and CZE with ICP MS and electrospray MS-MS detection. J Anal At Spectrom 18:120-127

    Article  Google Scholar 

  • 78. Schier GA, McQuattie CJ (1995) Effect of aluminum on the growth, anatomy, and nutrient content of ectomycorrhizal and non-mycorrhizal eastern white pine seedlings. Can J For Res 25:1252-1262

    Article  CAS  Google Scholar 

  • 79. Snowden KC, Richards KD, Gardner RC (1995) Aluminum-induced genes. Induction by toxic metals, low calcium, and wounding and pattern of expression in root tips. Plant Physiol 107:341-348

    PubMed  CAS  PubMed Central  Google Scholar 

  • 80. Stephan UW, Scholz G (1993) Nicotianamine: mediator of transport of iron and other heavy metals in the phloem? Physiol Plant 88:522-529

    Article  CAS  Google Scholar 

  • 81. Stephan UW, Schmidke I, Stephan VW, Scholz G (1996) The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals 9:84-90

    Article  CAS  Google Scholar 

  • 82. Sresty TV, Madhava Rao KV (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Envir Experi Bot 41:3-13

    Article  CAS  Google Scholar 

  • 83. Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836-1844

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 84. Toaspern M, Lasat M, Kochian L, Smolenski K, Bilderback D, Fontes E, Finkelstein K (2000) X-ray imaging of zinc accumulation in bioremediators. CHESS Newsletter 2000:44-45

    Google Scholar 

  • 85. Tommey AM, Shi J, Lindsay WP, Urwin PE, Ronbinson NJ (1991) Expression of the pea gene PsMTa in E. coli-metal-binding properties of the expressed protein. FEBS Lett 292:48-52

    Article  PubMed  CAS  Google Scholar 

  • 86. Vacchina V, Mari S, Czernic P, Marques L, Pianelli K, Schaumlöffel D, Lebrun M, Lobinski R (2003) Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray ms/ms assisted by cloning using yeast complementation. Analytical Chem 75:2740-2745

    Article  CAS  Google Scholar 

  • 87. Van Hoof NALM, Hassinen VH, Hakvoort HWJ, Ballintijn KF, Schat H, Verkleij JAC, Ernst WHO, Karenlampi SO, Tervahauta AI (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol 126:1519-1526

    Article  Google Scholar 

  • 88. Van Steveninck RFM, Barbare A, Fernando DR, Van Steveninck ME (1994) The binding of zinc, but not cadmium, by phytic acid in roots of crop plants. Plant Soil 167:157-164

    Article  Google Scholar 

  • 89. Van Vliet C, Andersen CR, Cobbett CS (1995) Copper-sensitive mutant of Arabidopsis thaliana. Plant Physiol 109:871-878

    Article  Google Scholar 

  • 90. Vatamaniuk OK, Mari S, Lang A, Chalasani S, Demkiv LO, Rea PA (2004) Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with gamma-glutamylcysteine during catalysis: stoichiometric and site-directed mutagenic analysis of Arabidopsis thaliana PCS1-catalyzed phytochelatin synthesis. J Biol Chem 279:22449-22460

    Article  PubMed  CAS  Google Scholar 

  • 91. Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110-7115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 92. Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase-blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275:31451-31459

    Article  PubMed  CAS  Google Scholar 

  • 93. Vogeli-Lange R, Wagner GJ (1990) Subcellular localisation of cadmium and cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides. Plant Physiol 92:1086-1093

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 94. Von Wirén N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107-1114

    Article  Google Scholar 

  • 95. Vreugdenhil D, Aarts MGM, Koornneef M, Nelissen H, Ernst WHO (2004) Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant Cell Envi 27:829-839

    Google Scholar 

  • 96. Wang J, Evangelou BP, Nielsen MT (1992) Surface chemical properties of purified root cell walls from two tobacco genotypes exhibiting different tolerance to manganese toxicity. Plant Physiol 100:496-501

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 97. Weber M, Harada E, Vess C, Roepenack-Lahaye E, Clemens S (2003) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269-281

    Article  Google Scholar 

  • 98. Yang YY, Jung J-Y, Song W-Y, Suh H-S, Lee Y (2000) Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol 124:1019-1026

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 99. Zenk MH (1996) Heavy metal detoxification in higher plants-a review. Gene 179:21-30

    Article  PubMed  CAS  Google Scholar 

  • 100. Zhao FJ, Lombi E, Breedon T, McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507-514

    Article  CAS  Google Scholar 

  • 101. Zhou J, Goldsbrough PB (1994) Functional homologs of functional metallothionein genes from Arabidopsis. Plant Cell 6:875-884

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 102. Zhu Y, Pilon-Smits EA, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73-80

    Article  CAS  Google Scholar 

  • 103. Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169-1178

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Markus J. Tamas Enrico Martinoia

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mari, S., Lebrun, M. (2005). Metal immobilization: where and how?. In: Tamas, M.J., Martinoia, E. (eds) Molecular Biology of Metal Homeostasis and Detoxification. Topics in Current Genetics, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_103

Download citation

Publish with us

Policies and ethics