Skip to main content

Part of the book series: Structure and Bonding ((STRUCTURE,volume 175))

Abstract

In this chapter, we delve into the X-ray diffraction techniques that can be used to address the question as to where the organic structure-directing agents (OSDAs) are located in the pores of a zeolite framework structure and give an overview of some of the practical issues involved. By examining the results of such investigations, we attempt to establish whether the OSDAs are really disordered, as is often claimed, or if it is the methods we use that give this impression. In fact, the non-framework species in the channels of a zeolite appear to be arranged quite logically in a chemically sensible manner. In most cases, the OSDA within the pores can be described well as a superposition of just a few discrete, symmetry-related positions, provided the discrepancies between the OSDA and framework symmetries can be resolved. On the basis of some selected examples, we show that their arrangements can be extracted from experimental data using a systematic strategy and sometimes supplementary information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Barrer RM, Denny PJ (1961) J Chem Soc 971–982. doi:10.1039/JR9610000971

  2. Lok BM, Cannan TR, Messina CA (1983) Zeolites 3(4):282–291

    Article  CAS  Google Scholar 

  3. Lobo RF, Zones SI, Davis ME (1995) J Incl Phenom Macrocycl Chem 21(1–4):47–78

    CAS  Google Scholar 

  4. Gies H, Marler B (1992) Zeolites 12(1):42–49

    Article  CAS  Google Scholar 

  5. Gies H (1994) In: Jansen JC, Stöcker M, Karge HG, Weitkamp J (eds) Advanced zeolite science and applications, vol 85, Elsevier, pp 295–327

    Google Scholar 

  6. Kubota Y, Helmkamp MM, Zones SI, Davis ME (1996) Microporous Mater 6(4):213–229

    Article  CAS  Google Scholar 

  7. Millini R, Carluccio L, Frigerio F, O’Neil Parker W, Bellussi G (1998) Micropor Mesopor Mat 24(4–6):199–211

    Article  CAS  Google Scholar 

  8. Wagner P, Nakagawa Y, Lee GS, Davis ME, Elomari S, Medrud RC, Zones SI (2000) J Am Chem Soc 122(2):263–273

    Article  CAS  Google Scholar 

  9. McCusker LB, Baerlocher C (in press) In: Vol H, Gilmore CJ, Kaduk J, Schenk H (eds) International tables for crystallography, Wiley

    Google Scholar 

  10. Baerlocher C, McCusker LB. Database for zeolite structures. http://www.iza-structure.org/databases/

  11. Jordá JL, Rey F, Sastre G, Valencia S, Palomino M, Corma A, Segura A, Errandonea D, Lacomba R, Manjón FJ, Gomis Ó, Kleppe AK, Jephcoat AP, Amboage M, Rodríguez-Velamazán JA (2013) Angew Chem 125(40):10652–10656

    Article  Google Scholar 

  12. Roth WJ, Nachtigall P, Morris RE, Wheatley PS, Seymour VR, Ashbrook SE, Chlubná P, Grajciar L, Položij M, Zukal A, Shvets O, Čejka J (2013) Nat Chem 5(7):628–633

    Article  CAS  Google Scholar 

  13. Chlubná-Eliásová P, Tian Y, Pinar AB, Kubr UM, Cejka J, Morris RE (2014) Angew Chem 126(27):7168–7172

    Article  Google Scholar 

  14. Breck DW, Eversole WG, Milton RM, Reed TB, Thomas TL (1956) J Am Chem Soc 78(23):5963–5972

    Article  CAS  Google Scholar 

  15. Reed TB, Breck DW (1956) J Am Chem Soc 78(23):5972–5977

    Article  CAS  Google Scholar 

  16. Gramlich V, Meier WM (1971) Z Kristallografiya 133(1–6):134–149

    Article  CAS  Google Scholar 

  17. Baerlocher C, Meier WM (1969) Helv Chim Acta 52(7):1853–1860

    Article  CAS  Google Scholar 

  18. Baerlocher C, Meier WM (1970) Helv Chim Acta 53(6):1285–1293

    Article  CAS  Google Scholar 

  19. Argauer RJ, Landolt GR (1972) Crystalline zeolite ZSM-5 and method of preparing the same. US3702886 A

    Google Scholar 

  20. Flanigen EM, Bennett JM, Grose RW, Cohen JP, Patton RL, Kirchner RM, Smith JV (1978) Nature 271(5645):512–516

    Article  CAS  Google Scholar 

  21. Kokotailo GT, Lawton SL, Olson DH, Meier WM (1978) Nature 272(5652):437–438

    Article  CAS  Google Scholar 

  22. Price GD, Pluth JJ, Smith JV, Araki T, Bennett JM (1981) Nature 292(5826):818–819

    Article  CAS  Google Scholar 

  23. Baerlocher C (1984) In: Olson DH, Bisio A (eds) 6th Int Zeolite Conf.; Guildford Butterworths: Reno, pp 823–833

    Google Scholar 

  24. van Koningsveld H, van Bekkum H, Jansen JC (1987) Acta Cryst B 43(2):127–132

    Article  Google Scholar 

  25. Bennett JM, Cohen JP, Flanigen EM, Pluth JJ, Smith JV (1983) In: Intrazeolite chemistry, ACS Symposium Series, vol 218, American Chemical Society, pp 109–118

    Google Scholar 

  26. Parise JB (1984) J Chem Soc Chem Commun 21:1449–1450

    Article  Google Scholar 

  27. Parise JB (1984) Acta Crystallogr C 40(10):1641–1643

    Article  Google Scholar 

  28. Gies H (1983) Z Kristallogr 164(3–4):247–257

    CAS  Google Scholar 

  29. Gerke H, Gies H (1984) Z Kristallogr 166(1–4):11–22

    Google Scholar 

  30. Gies H (1984) Z Kristallogr 167(1–4):73–82

    Article  CAS  Google Scholar 

  31. Gies H (1986) Z Kristallogr 175(1–4):93–104

    CAS  Google Scholar 

  32. McCusker L (1988) J Appl Cryst 21(4):305–310

    Article  CAS  Google Scholar 

  33. Harrison WTA, Martin TE, Gier TE, Stucky GD (1992) J Mater Chem 2(2):175–181

    Article  CAS  Google Scholar 

  34. Harrison WTA, Nenoff TM, Eddy MM, Martin TE, Stucky GD (1992) J Mater Chem 2(11):1127–1134

    Article  CAS  Google Scholar 

  35. Parise JB (1986) Acta Cryst C 42(6):670–673

    Article  Google Scholar 

  36. Loiseau T, Férey G (1992) J Chem Soc Chem Commun 17:1197–1198

    Article  Google Scholar 

  37. Weigel SJ, Morris RE, Stucky GD, Cheetham AK (1998) J Mater Chem 8(7):1607–1611

    Article  CAS  Google Scholar 

  38. Wragg DS, Bull I, Hix GB, Morris RE (1999) Chem Commun 20:2037–2038

    Article  Google Scholar 

  39. Davis ME, Saldarriaga C, Montes C, Garces J, Crowder C (1988) Zeolites 8(5):362–366

    Article  CAS  Google Scholar 

  40. Richardson JW, Smith JV, Pluth JJ (1989) J Phys Chem 93(25):8212–8219

    Article  CAS  Google Scholar 

  41. McCusker LB, Baerlocher C, Jahn E, Bülow M (1991) Zeolites 11(4):308–313

    Article  CAS  Google Scholar 

  42. Pinar AB, McCusker LB, Baerlocher C, Schmidt J, Hwang S-J, Davis ME, Zones SI (2015) Dalton Trans 44(13):6288–6295

    Article  CAS  Google Scholar 

  43. Pinar AB, McCusker LB, Baerlocher C, Hwang S-J, Xie D, Benin AI, Zones SI (2016) New J Chem 40(5):4160–4166

    Article  CAS  Google Scholar 

  44. Bergmann J, Le Bail A, Shirley R, Zlokazov V (2004) Z Kristallogr Cryst Mater 219(12):783–790

    Article  CAS  Google Scholar 

  45. Rietveld HM (1969) J Appl Cryst 2(2):65–71

    Article  CAS  Google Scholar 

  46. Giacovazzo C, Monaco HL, Artioli G, Viterbo D, Ferraris G, Gilli G, Zanotti G, Catti M (2002) Fundamentals of crystallography. In: Giaccovazzo C Series Ed., Oxford Science Publications

    Google Scholar 

  47. McCusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1999) J Appl Crystallogr 32(1):36–50

    Article  CAS  Google Scholar 

  48. Young RA (1993) The rietveld method. In: Young RA, Series Ed, Oxford University Press

    Google Scholar 

  49. Coelho AA (2012) TOPAS-ACADEMIC v5.0

    Google Scholar 

  50. Toby BH, Von Dreele RB (2013) J Appl Crystallogr 46(2):544–549

    Article  CAS  Google Scholar 

  51. Rodríguez-Carvajal J (1990) In: Galy J, Louër D (eds) Abstracts of the meeting on powder diffraction (Toulouse, France), pp 127–128

    Google Scholar 

  52. Le Bail A, Duroy H, Fourquet JL (1988) Mater Res Bull 23(3):447–452

    Article  Google Scholar 

  53. Pawley GS (1981) J Appl Crystallogr 14(6):357–361

    Article  CAS  Google Scholar 

  54. Baerlocher C, Hepp A, Meier WM (1976) DLS-76

    Google Scholar 

  55. Gale JD, Rohl AL (2003) Mol Simul 29(5):291–341

    Article  CAS  Google Scholar 

  56. Momma K, Izumi F (2011) J Appl Crystallogr 44(6):1272–1276

    Article  CAS  Google Scholar 

  57. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  58. Smeets S, McCusker LB, Baerlocher C, Elomari S, Xie D, Zones SI (2016) J Am Chem Soc 138(22):7099–7106

    Article  CAS  Google Scholar 

  59. David WIF, Shankland K (2008) Acta Cryst A 64(1):52–64

    Article  CAS  Google Scholar 

  60. Deem MW, Newsam JM (1989) Nature 342(6247):260–262

    Article  CAS  Google Scholar 

  61. Porcher F, Borissenko E, Souhassou M, Takata M, Kato K, Rodriguez-Carvajal J, Lecomte C (2008) Acta Crystallogr B 64(6):713–724

    Article  CAS  Google Scholar 

  62. Fyfe CA, Lee JSJ, Cranswick LMD, Swainson I (2008) Micropor Mesopor Mat 112(1–3):299–307

    Article  CAS  Google Scholar 

  63. Meilikhov M, Yusenko K, Fischer RA (2010) Dalton Trans 39(45):10990–10999

    Article  CAS  Google Scholar 

  64. Dejoie C, Martinetto P, Tamura N, Kunz M, Porcher F, Bordat P, Brown R, Dooryhée E, Anne M, McCusker LB (2014) J Phys Chem C 118(48):28032–28042

    Article  CAS  Google Scholar 

  65. Inge AK, Huang S, Chen H, Moraga F, Sun J, Zou X (2012) Cryst Growth Des 12(10):4853–4860

    Article  CAS  Google Scholar 

  66. Xu Y, Liu L, Chevrier DM, Sun J, Zhang P, Yu J (2013) Inorg Chem 52(18):10238–10244

    Article  Google Scholar 

  67. Chen R, Yao J, Gu Q, Smeets S, Baerlocher C, Gu H, Zhu D, Morris W, Yaghi OM, Wang H (2013) Chem Commun 49(82):9500–9502

    Article  CAS  Google Scholar 

  68. Reimer N, Reinsch H, Inge AK, Stock N (2015) Inorg Chem 54(2):492–501

    Article  CAS  Google Scholar 

  69. Halis S, Inge AK, Dehning N, Weyrich T, Reinsch H, Stock N (2016) Inorg Chem 55(15):7425–7431

    Article  CAS  Google Scholar 

  70. Favre-Nicolin V, Černý R (2002) J Appl Crystallogr 35(6):734–743

    Article  CAS  Google Scholar 

  71. David WIF, Shankland K, van de Streek J, Pidcock E, Motherwell WDS, Cole JC (2006) J Appl Crystallogr 39(6):910–915

    Article  CAS  Google Scholar 

  72. Allen FH (2002) Acta Crystallogr B 58(3):380–388

    Article  Google Scholar 

  73. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) J ChemInform 4(1):17–17

    Article  CAS  Google Scholar 

  74. Hanson RM (2010) J Appl Cryst 43(5):1250–1260

    Article  CAS  Google Scholar 

  75. Weininger D (1988) J Chem Inf Comput Sci 28(1):31–36

    Article  CAS  Google Scholar 

  76. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) J Chem 3(1):33

    Article  Google Scholar 

  77. Prince E (ed) (2006) International tables for crystallography: mathematical, physical and chemical tables, vol C, 1st edn. Fuess H, Hahn T, Wondratschek H, Müller U, Shmueli U, Prince E, Authier A, Kopský V, Litvin DB, Rossmann MG, Arnold E, Hall S, McMahon B, Series Eds, International tables for crystallography; International Union of Crystallography, Chester, England

    Google Scholar 

  78. Smeets S, McCusker LB, Baerlocher C, Xie D, Chen C-Y, Zones SI (2015) J Am Chem Soc 137(5):2015–2020

    Article  CAS  Google Scholar 

  79. Smeets S, Xie D, Baerlocher C, McCusker LB, Wan W, Zou X, Zones SI (2014) Angew Chem 126(39):10566–10570

    Article  Google Scholar 

  80. Baerlocher C, Xie D, McCusker LB, Hwang S-J, Chan IY, Ong K, Burton AW, Zones SI (2008) Nat Mater 7(8):631–635

    Article  CAS  Google Scholar 

  81. Burton A, Lee GS, Zones SI (2006) Micropor Mesopor Mat 90(1–3):129–144

    Article  CAS  Google Scholar 

  82. Yamamoto K, Ikeda T, Onodera M, Muramatsu A, Mizukami F, Wang Y, Gies H (2010) Micropor Mesopor Mat 128(1–3):150–157

    Article  CAS  Google Scholar 

  83. Collins DM (1982) Nature 298(5869):49–51

    Article  CAS  Google Scholar 

  84. Momma K, Ikeda T, Belik AA, Izumi F (2013) Powder Diffract 28(3):184–193

    Article  CAS  Google Scholar 

  85. Noble GW, Wright PA, Kvick Å (1997) Dalton Trans (23):4485–4490

    Google Scholar 

  86. Castro M, Seymour VR, Carnevale D, Griffin JM, Ashbrook SE, Wright PA, Apperley DC, Parker JE, Thompson SP, Fecant A, Bats N (2010) J Phys Chem C 114(29):12698–12710

    Article  CAS  Google Scholar 

  87. Spackman MA, Jayatilaka D (2009) CrstEngComm 11(1):19–32

    Article  CAS  Google Scholar 

  88. Camblor MA, Díaz-Cabañas M-J, Perez-Pariente J, Teat SJ, Clegg W, Shannon IJ, Lightfoot P, Wright PA, Morris RE (1998) Angew Chem Int Ed 37(15):2122–2126

    Article  CAS  Google Scholar 

  89. Bu X, Feng P, Gier TE, Zhao D, Stucky GD (1998) J Am Chem Soc 120(51):13389–13397

    Article  CAS  Google Scholar 

  90. Bu X, Feng P, Stucky GD (1998) J Am Chem Soc 120(43):11204–11205

    Article  CAS  Google Scholar 

  91. Josien L, Simon A, Gramlich V, Patarin J (2001) Chem Mater 13(4):1305–1311

    Article  CAS  Google Scholar 

  92. Ove Kongshaug K, Fjellvåg H, Petter Lillerud K (2001) J Mater Chem 11(4):1242–1247

    Article  Google Scholar 

  93. Marler B, Werthmann U, Gies H (2001) Micropor Mesopor Mat 43(3):329–340

    Article  CAS  Google Scholar 

  94. Wheatley PS, Morris RE (2002) J Solid State Chem 167(2):267–273

    Article  CAS  Google Scholar 

  95. Jordá JL, McCusker LB, Baerlocher C, Morais CM, Rocha J, Fernandez C, Borges C, Lourenco JP, Ribeiro MF, Gabelica Z (2003) Micropor Mesopor Mat 65(1):43–57

    Article  Google Scholar 

  96. Yang X, Camblor MA, Lee Y, Liu H, Olson DH (2004) J Am Chem Soc 126(33):10403–10409

    Article  CAS  Google Scholar 

  97. Zanardi S, Alberti A, Cruciani G, Corma A, Fornés V, Brunelli M (2004) Angew Chem Int Ed 43(37):4933–4937

    Article  CAS  Google Scholar 

  98. Li Y, Zou X (2005) Angew Chem Int Ed 44(13):2012–2015

    Article  CAS  Google Scholar 

  99. Parnham ER, Morris RE (2006) Chem Mater 18(20):4882–4887

    Article  CAS  Google Scholar 

  100. Tang L, Shi L, Bonneau C, Sun J, Yue H, Ojuva A, Lee B-L, Kritikos M, Bell RG, Bacsik Z, Mink J, Zou X (2008) Nat Mater 7(5):381–385

    Article  CAS  Google Scholar 

  101. Su J, Wang Y, Wang Z, Lin J (2009) J Am Chem Soc 131(17):6080–6081

    Article  CAS  Google Scholar 

  102. Armstrong JA, Weller MT (2010) J Am Chem Soc 132(44):15679–15686

    Article  CAS  Google Scholar 

  103. Broach RW, Kirchner RM (2011) Micropor Mesopor Mat 143(2–3):398–400

    Article  CAS  Google Scholar 

  104. Liu Z, Song X, Li J, Li Y, Yu J, Xu R (2012) Inorg Chem 51(3):1969–1974

    Article  CAS  Google Scholar 

  105. Shao L, Li Y, Yu J, Xu R (2012) Inorg Chem 51(1):225–229

    Article  CAS  Google Scholar 

  106. Xie D, McCusker LB, Baerlocher C, Zones SI, Wan W, Zou X (2013) J Am Chem Soc 135(28):10519–10524

    Article  CAS  Google Scholar 

  107. Wang Y, Li Y, Yan Y, Xu J, Guan B, Wang Q, Li J, Yu J (2013) Chem Commun 49(79):9006–9008

    Article  CAS  Google Scholar 

  108. Broach RW, Greenlay N, Jakubczak P, Knight LM, Miller SR, Mowat JPS, Stanczyk J, Lewis GJ (2014) Micropor Mesopor Mat 189:49–63

    Article  CAS  Google Scholar 

  109. Smeets S, Xie D, McCusker LB, Baerlocher C, Zones SI, Thompson JA, Lacheen HS, Huang H-M (2014) Chem Mater 26(13):3909–3913

    Article  CAS  Google Scholar 

  110. Willhammar T, Burton AW, Yun Y, Sun J, Afeworki M, Strohmaier KG, Vroman H, Zou X (2014) J Am Chem Soc 136(39):13570–13573

    Article  CAS  Google Scholar 

  111. Smeets S, Koch L, Mascello N, Sesseg J, Hernández-Rodríguez M, Mitchell S, Pérez-Ramírez J (2015) CrstEngComm 17(26):4865–4870

    Article  CAS  Google Scholar 

  112. Bae J, Cho J, Lee JH, Seo SM, Hong SB (2016) Angew Chem 128(26):7495–7499

    Article  Google Scholar 

  113. Kang JH, Xie D, Zones SI, Smeets S, McCusker LB, Davis ME (2016) Chem Mater 28(17):6250–6259

    Article  CAS  Google Scholar 

  114. Guo P, Strohmaier K, Vroman H, Afeworki M, Ravikovitch PI, Paur CS, Sun J, Burton A, Zou X (2016) Inorg Chem Front 3(11):1444–1448

    Article  CAS  Google Scholar 

  115. Chen F-J, Gao Z-H, Liang L-L, Zhang J, Du H-B (2016) CrstEngComm 18(15):2735–2741

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.S. thanks the Swiss National Science Foundation for financial support (project number: 165282) and L.M. Chevron ETC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stef Smeets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Smeets, S., McCusker, L.B. (2017). Location of Organic Structure-Directing Agents in Zeolites Using Diffraction Techniques. In: Gómez-Hortigüela, L. (eds) Insights into the Chemistry of Organic Structure-Directing Agents in the Synthesis of Zeolitic Materials. Structure and Bonding, vol 175. Springer, Cham. https://doi.org/10.1007/430_2017_7

Download citation

Publish with us

Policies and ethics