Skip to main content

Large Metal Chalcogenide Clusters and Their Ordered Superstructures via Solvothermal and Ionothermal Syntheses

  • Chapter
  • First Online:
Clusters – Contemporary Insight in Structure and Bonding

Part of the book series: Structure and Bonding ((STRUCTURE,volume 174))

Abstract

Nanometre-scale metal chalcogenide clusters and materials derived from their regular spatial organization via covalent or other bonding interactions represent an important area of research, encompassing intricate structures and unique size-related electronic and physical properties. This chapter will summarize the structure and bonding principles in these systems, focusing on high nuclearity and discrete metal chalcogenide clusters, and will review the recent progress in their preparation using solvothermal and ionothermal approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dance IG (1986) Polyhedron 5:1037–1104. doi:10.1016/S0277-5387(00)84307-7

    Article  CAS  Google Scholar 

  2. Müller A, Diemann E (1987) Adv Inorg Chem 31:89–122. doi:10.1016/S0898-8838(08)60222-6

    Article  Google Scholar 

  3. Ansari M, Ibers J (1990) Coord Chem Rev 100:223–266. doi:10.1016/0010-8545(90)85011-G

    Article  CAS  Google Scholar 

  4. Krebs B, Henkel G (1991) Angew Chem Int Ed Engl 30:769–788. doi:10.1002/anie.199107691

    Article  Google Scholar 

  5. Roof L, Kolis J (1993) Chem Rev 93:1037–1080. doi:10.1021/cr00019a010

    Article  CAS  Google Scholar 

  6. Dance I, Fisher K (1994) Prog Inorg Chem Vol 41 41:637–803. doi:10.1002/9780470166420.ch9

    Google Scholar 

  7. Arnold J (1995) In: Karlin KD (ed) Prog Inorg Chem, vol 43. Wiley, Hoboken, pp 353–417

    Google Scholar 

  8. Alivisatos AP (1996) Science 271:933–937. doi:10.1126/science.271.5251.933

    Article  CAS  Google Scholar 

  9. DeGroot MW, Corrigan JF (2004) In: Fujita M, Creutz PC (eds) Compr Coord Chem II. Elsevier, Amsterdam pp 57–123

    Google Scholar 

  10. Corrigan JF, DeGroot MW (2004) In: Rao CNR, Müller A, Cheetham K (eds) The chemistry of nanomaterials: synthesis, properties and applications. Wiley-VCH, Weinheim/Wiley, Chichester, pp 418–451

    Google Scholar 

  11. Corrigan JF, Fuhr O, Fenske D (2009) Adv Mater 21:1867–1871. doi:10.1002/adma.200802897

    Article  CAS  Google Scholar 

  12. Kübel C, Voigt A, Schoenmakers R, Otten M, Su D, Lee T-C, Carlsson A, Bradley J (2005) Microsc Microanal 11:378–400. doi:10.1017/S1431927605050361

    Article  CAS  Google Scholar 

  13. Friedrich H, Gommes CJ, Overgaag K, Meeldijk JD, Evers WH, de Nijs B, Boneschanscher MP, de Jongh PE, Verkleij AJ, de Jong KP, van Blaaderen A, Vanmaekelbergh D (2009) Nano Lett 9:2719–2724. doi:10.1021/nl901212m

    Article  CAS  Google Scholar 

  14. Evers WH, Friedrich H, Filion L, Dijkstra M, Vanmaekelbergh D (2009) Angew Chem Int Ed 48:9655–9657. doi:10.1002/anie.200904821

    Article  CAS  Google Scholar 

  15. Boneschanscher MP, Evers WH, Qi W, Meeldijk JD, Dijkstra M, Vanmaekelbergh D (2013) Nano Lett 13:1312–1316. doi:10.1021/nl400100c

    Article  CAS  Google Scholar 

  16. Alivisatos AP (1996) J Phys Chem 100:13226–13239. doi:10.1021/jp9535506

    Article  CAS  Google Scholar 

  17. Nirmal M, Brus L (1999) Acc Chem Res 32:407–414. doi:10.1021/ar9700320

    Article  CAS  Google Scholar 

  18. Wang Y, Herron N (1990) Phys Rev B 42:7253–7255. doi:10.1103/PhysRevB.42.7253

    Article  CAS  Google Scholar 

  19. Soloviev VN, Eichhöfer A, Fenske D, Banin U (2000) J Am Chem Soc 122:2673–2674. doi:10.1021/ja9940367

    Article  CAS  Google Scholar 

  20. Soloviev VN, Eichhöfer A, Fenske D, Banin U (2001) J Am Chem Soc 123:2354–2364. doi:10.1021/ja003598j

    Article  CAS  Google Scholar 

  21. Collier CP, Vossmeyer T, Heath JR (1998) Annu Rev Phys Chem 49:371–404. doi:10.1146/annurev.physchem.49.1.371

    Article  CAS  Google Scholar 

  22. Gao Y, Tang Z (2011) Small 7:2133–2146. doi:10.1002/smll.201100474

    Article  CAS  Google Scholar 

  23. Xie J, Cao S, Good D, Wei M, Ren X (2010) Inorg Chem 49:1319–1321. doi:10.1021/ic9023629

    Article  CAS  Google Scholar 

  24. Zhang Q, Wu T, Bu X, Tran T, Feng P (2008) Chem Mater 20:4170–4172. doi:10.1021/cm800904d

    Article  CAS  Google Scholar 

  25. Yang H, Tao W, Le W, PingYun F (2013) Sci China Chem 56:423–427. doi:10.1007/s11426-013-4847-3

    Article  CAS  Google Scholar 

  26. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Chem Rev 110:389–458. doi:10.1021/cr900137k

    Article  CAS  Google Scholar 

  27. Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Chem Rev 110:6873–6890. doi:10.1021/cr900289f

    Article  CAS  Google Scholar 

  28. Konstantatos G, Sargent EH (2010) Nat Nanotechnol 5:391–400. doi:10.1038/nnano.2010.78

    Article  CAS  Google Scholar 

  29. Wang F, Tan WB, Zhang Y, Fan X, Wang M (2006) Nanotechnology 17:R1–R13. doi:10.1088/0957-4484/17/1/R01

    Article  CAS  Google Scholar 

  30. Bailey RE, Smith AM, Nie S (2004) Phys E Low Dimens Syst Nanostruct 25:1–12. doi:10.1016/j.physe.2004.07.013

    Article  CAS  Google Scholar 

  31. Anson CE, Eichhöfer A, Issac I, Fenske D, Fuhr O, Sevillano P, Persau C, Stalke D, Zhang J (2008) Angew Chem Int Ed 47:1326–1331. doi:10.1002/anie.200704249

    Article  CAS  Google Scholar 

  32. Liu Y, Najafabadi BK, Fard MA, Corrigan JF (2015) Angew Chem Int Ed 54:4832–4835. doi:10.1002/anie.201411944

    Article  CAS  Google Scholar 

  33. Palchik O, Iyer RG, Liao JH, Kanatzidis MG (2003) Inorg Chem 42:5052–5054. doi:10.1021/ic034600l

    Article  CAS  Google Scholar 

  34. Palchik O, Iyer RG, Canlas CG, Weliky DP, Kanatzidis MG (2004) Z Anorg Allg Chem 630:2237–2247. doi:10.1002/zaac.200400154

    Article  CAS  Google Scholar 

  35. Qian YT, Gu YL, Lu J (2004) In: Rao CNR, Müller A, Cheethameds AK (eds) Chemistry of nanomaterials: synthesis, properties and application. Wiley-VCH, Weinheim; Wiley, Chichester, pp 170–207

    Google Scholar 

  36. Xu B, Wang X (2012) Dalton Trans 41:4719–4725. doi:10.1039/c2dt11842d

    Article  CAS  Google Scholar 

  37. Xiong W-W, Zhang G, Zhang Q (2014) Inorg Chem Front 1:292–301. doi:10.1039/c4qi00013g

    Article  CAS  Google Scholar 

  38. Wu T, Zuo F, Wang L, Bu X, Zheng S-T, Ma R, Feng P (2011) J Am Chem Soc 133:15886–15889. doi:10.1021/ja2066994

    Article  CAS  Google Scholar 

  39. Wang Y-H, Luo W, Jiang J-B, Bian G-Q, Zhu Q-Y, Dai J (2012) Inorg Chem 51:1219–1221. doi:10.1021/ic202490q

    Article  CAS  Google Scholar 

  40. Lin Y, Massa W, Dehnen S (2012) J Am Chem Soc 134:4497–4500. doi:10.1021/ja2115635

    Article  CAS  Google Scholar 

  41. Wu T, Zhang Q, Hou Y, Wang L, Mao C, Zheng S-T, Bu X, Feng P (2013) J Am Chem Soc 135:10250–10253. doi:10.1021/ja404181c

    Article  CAS  Google Scholar 

  42. Lin J, Zhang Q, Wang L, Liu X, Yan W, Wu T, Bu X, Feng P (2014) J Am Chem Soc 136:4769–4779. doi:10.1021/ja501288x

    Article  CAS  Google Scholar 

  43. Wu T, Bu X, Liao P, Wang L, Zheng S-T, Ma R, Feng P (2012) J Am Chem Soc 134:3619–3622. doi:10.1021/ja210039u

    Article  CAS  Google Scholar 

  44. Xiong W-W, Li J-R, Hu B, Tan B, Li R-F, Huang X-Y (2012) Chem Sci 3:1200–1204. doi:10.1039/c2sc00824f

    Article  CAS  Google Scholar 

  45. Cheetham AK, Ferey G, Loiseau T (1999) Angew Chem Int Ed 38:3268–3292

    Article  CAS  Google Scholar 

  46. Bu X, Zheng N, Feng P (2004) Chem Eur J 10:3356–3362. doi:10.1002/chem.200306041

    Article  CAS  Google Scholar 

  47. Feng P, Bu X, Zheng N (2005) Acc Chem Res 38:293–303. doi:10.1021/ar0401754

    Article  CAS  Google Scholar 

  48. Vaqueiro P (2010) Dalton Trans 39:5965–5972. doi:10.1039/c000130a

    Article  CAS  Google Scholar 

  49. Wu T, Wang L, Bu X, Chau V, Feng P (2010) J Am Chem Soc 132:10823–10831. doi:10.1021/ja102688p

    Article  CAS  Google Scholar 

  50. Dehnen S, Eichhöfer A, Fenske D (2002) Eur J Inorg Chem 279–317

    Google Scholar 

  51. Dehnen S, Eichhöfer A, Corrigan JF, Fenske D (2004) In: Schmid G (ed) Nanoparticles theory application. Wiley-VCH, Weinheim, pp 107–185

    Google Scholar 

  52. Fuhr O, Dehnen S, Fenske D (2013) Chem Soc Rev 42:1871–1906. doi:10.1039/c2cs35252d

    Article  CAS  Google Scholar 

  53. Moller A, Amann P, Kataev V, Schittner N (2004) Z Anorg Allg Chem 630:890–894. doi:10.1002/zaac.200400034

    Article  CAS  Google Scholar 

  54. Lin W-Q, Liao X-F, Jia J-H, Leng J-D, Liu J-L, Guo F-S, Tong M-L (2013) Chem Eur J 19:12254–12258. doi:10.1002/chem.201301397

    Article  CAS  Google Scholar 

  55. Eichhöfer A, Fenske D (2000) J Chem Soc Dalton Trans 941–944. doi:10.1039/a909737f

  56. Zheng NF, Bu XH, Lu HW, Zhang QC, Feng PY (2005) J Am Chem Soc 127:11963–11965. doi:10.1021/ja053588o

    Article  CAS  Google Scholar 

  57. Li HL, Laine A, O’Keeffe M, Yaghi OM (1999) Science 283:1145–1147. doi:10.1126/science.283.5405.1145

    Article  CAS  Google Scholar 

  58. Zhang Q, Bu X, Han L, Feng P (2006) Inorg Chem 45:6684–6687. doi:10.1021/ic060367q

    Article  CAS  Google Scholar 

  59. Wu T, Bu X, Zhao X, Khazhakyan R, Feng P (2011) J Am Chem Soc 133:9616–9625. doi:10.1021/ja203143q

    Article  CAS  Google Scholar 

  60. Wang L, Wu T, Zuo F, Zhao X, Bu X, Wu J, Feng P (2010) J Am Chem Soc 132:3283–3285. doi:10.1021/ja9100672

    Article  CAS  Google Scholar 

  61. Li H, Kim J, O’Keeffe M, Yaghi OM (2003) Angew Chem-Int Ed 42:1819–1821. doi:10.1002/anie.200250748

    Article  CAS  Google Scholar 

  62. Han X, Xu J, Wang Z, Liu D, Wang C (2015) Chem Commun 51:3919–3922. doi:10.1039/c5cc00084j

    Article  CAS  Google Scholar 

  63. Du C-F, Li J-R, Zhang B, Shen N-N, Huang X-Y (2015) Inorg Chem 54:5874–5878. doi:10.1021/acs.inorgchem.5b00652

    Article  CAS  Google Scholar 

  64. Su WP, Huang XY, Li J, Fu HX (2002) J Am Chem Soc 124:12944–12945. doi:10.1021/ja027830s

    Article  CAS  Google Scholar 

  65. Wang C, Bu XH, Zheng NF, Feng PY (2002) J Am Chem Soc 124:10268–10269. doi:10.1021/ja020735z

    Article  CAS  Google Scholar 

  66. Han X, Wang Z, Liu D, Xu J, Liu Y, Wang C (2014) Chem Commun 50:796–798. doi:10.1039/c3cc45439h

    Article  CAS  Google Scholar 

  67. Lin Q, Bu X, Feng P (2014) Chem Commun 50:4044–4046. doi:10.1039/c4cc00583j

    Article  CAS  Google Scholar 

  68. Zheng NF, Bu XH, Feng PY (2004) Angew Chem Int Ed 43:4753–4755. doi:10.1002/anie.200460386

    Article  CAS  Google Scholar 

  69. Beecher AN, Yang X, Palmer JH, LaGrassa AL, Juhas P, Billinge SJL, Owen JS (2014) J Am Chem Soc 136:10645–10653. doi:10.1021/ja503590h

    Article  CAS  Google Scholar 

  70. Herron N, Calabrese J, Farneth W, Wang Y (1993) Science 259:1426–1428. doi:10.1126/science.259.5100.1426

    Article  CAS  Google Scholar 

  71. Bendova M, Puchberger M, Schubert U (2010) Eur J Inorg Chem 3299–3306. doi:10.1002/ejic.201000454

    Google Scholar 

  72. Feng M-L, Kong D-N, Xie Z-L, Huang X-Y (2008) Angew Chem Int Ed 47:8623–8626. doi:10.1002/anie.200803406

    Article  CAS  Google Scholar 

  73. Lei Z-X, Zhu Q-Y, Zhang X, Luo W, Mu W-Q, Dai J (2010) Inorg Chem 49:4385–4387. doi:10.1021/ic902572m

    Article  CAS  Google Scholar 

  74. Zeng X, Yao X, Zhang J, Zhang Q, Wu W, Chai A, Wang J, Zeng Q, Xie J (2015) Inorg Chem Front 2:164–169. doi:10.1039/c4qi00227j

    Article  CAS  Google Scholar 

  75. Liu Y, Lin Q, Zhang Q, Bu X, Feng P (2014) Chem Eur J 20:8297–8301. doi:10.1002/chem.201402639

    Article  CAS  Google Scholar 

  76. Xie J, Batten SR, Zou Y, Ren X (2011) Cryst Growth Des 11:16–20. doi:10.1021/cg100926g

    Article  CAS  Google Scholar 

  77. Vossmeyer T, Reck G, Schulz B, Katsikas L, Weller H (1995) J Am Chem Soc 117:12881–12882. doi:10.1021/ja00156a035

    Article  CAS  Google Scholar 

  78. Voggu R, Biswas K, Govindaraj A, Rao CNR (2006) J Phys Chem B 110:20752–20755. doi:10.1021/jp0653757

    Article  CAS  Google Scholar 

  79. Dass A, Guo R, Tracy JB, Balasubramanian R, Douglas AD, Murray RW (2008) Langmuir 24:310–315. doi:10.1021/la702651y

    Article  CAS  Google Scholar 

  80. Pengo P, Pasquato L (2015) J Fluor Chem 177:2–10. doi:10.1016/j.jfluchem.2015.03.005

    Article  CAS  Google Scholar 

  81. Zhang Q, Lin Z, Bu X, Wu T, Feng P (2008) Chem Mater 20:3239–3241. doi:10.1021/cm702874s

    Article  CAS  Google Scholar 

  82. Emge TJ, Romanelli MD, Moore BF, Brennan JG (2010) Inorg Chem 49:7304–7312. doi:10.1021/ic1002989

    Article  CAS  Google Scholar 

  83. Holligan K, Rogler P, Rehe D, Pamula M, Kornienko AY, Emge TJ, Krogh-Jespersen K, Brennan JG (2015) Inorg Chem 54:8896–8904. doi:10.1021/acs.inorgchem.5b00452

    Article  CAS  Google Scholar 

  84. Adams RD, Zhang B, Murphy CJ, Yeung LK (1999) Chem Commun 383–384. doi:10.1039/a809443h

  85. Løver T, Bowmaker GA, Seakins JM, Cooney RP, Henderson W (1997) J Mater Chem 7:647–651. doi:10.1039/a607065e

    Article  Google Scholar 

  86. Hiratani T, Konishi K (2004) Angew Chem Int Ed 43:5943–5946. doi:10.1002/anie.200461190

    Article  CAS  Google Scholar 

  87. Nguyen KA, Pachter R, Day PN, Su H (2015) J Chem Phys 142:234305. doi:10.1063/1.4922320

    Article  CAS  Google Scholar 

  88. Lebold TP, Stringle DLB, Workentin MS, Corrigan JF (2003) Chem Commun 1398–1399. doi:10.1039/b302829a

  89. Wallbank AI, Borecki A, Taylor NJ, Corrigan JF (2005) Organometallics 24:788–790. doi:10.1021/om049238c

    Article  CAS  Google Scholar 

  90. Ahmar S, MacDonald DG, Vijayaratnam N, Battista TL, Workentin MS, Corrigan JF (2010) Angew Chem Int Ed 49:4422–4424. doi:10.1002/anie.201000686

    Article  CAS  Google Scholar 

  91. Tsuboi T, Takaguchi Y, Tsuboi S (2008) Chem Commun 76–78. doi:10.1039/b713680c

  92. Fukunaga N, Konishi K (2015) Nanoscale 7:20557–20563. doi:10.1039/c5nr06307h

    Article  CAS  Google Scholar 

  93. Zhou J, Bian G-Q, Zhang Y, Zhu Q-Y, Li C-Y, Dai J (2007) Inorg Chem 46:6347–6352. doi:10.1021/ic070334q

    Article  CAS  Google Scholar 

  94. Ewing SJ, Romero ML, Hutchinson J, Powell AV, Vaqueiro P (2012) Z Anorg Allg Chem 638:2526–2531. doi:10.1002/zaac.201200255

    Article  CAS  Google Scholar 

  95. Ewing SJ, Vaqueiro P (2015) Dalton Trans 44:1592–1600. doi:10.1039/c4dt02819h

    Article  CAS  Google Scholar 

  96. Wang C, Bu XH, Zheng NF, Feng PY (2002) Angew Chem-Int Ed 41:1959–1961

    Article  CAS  Google Scholar 

  97. Vaqueiro P (2008) Inorg Chem 47:20–22. doi:10.1021/ic701995p

    Article  CAS  Google Scholar 

  98. Zheng NF, Bu XG, Wang B, Feng PY (2002) Science 298:2366–2369. doi:10.1126/science.1078663

    Article  CAS  Google Scholar 

  99. Zheng NF, Bu XH, Feng PY (2003) Nature 426:428–432. doi:10.1038/nature02159

    Article  CAS  Google Scholar 

  100. Vaqueiro P, Romero ML (2008) J Am Chem Soc 130:9630–9631. doi:10.1021/ja801619e

    Article  CAS  Google Scholar 

  101. Xu C, Han Y-G, Duan T, Zhang Q-F, Leung W-H (2009) Inorg Chem Commun 12:1053–1056. doi:10.1016/j.inoche.2009.08.018

    Article  CAS  Google Scholar 

  102. Zhang Q, Bu X, Lin Z, Wu T, Feng P (2008) Inorg Chem 47:9724–9726. doi:10.1021/ic800588q

    Article  CAS  Google Scholar 

  103. Vaqueiro P, Romero ML, Rowan BC, Richards BS (2010) Chem Eur J 16:4462–4465. doi:10.1002/chem.200903425

    Article  CAS  Google Scholar 

  104. Wang Y-H, Zhang M-H, Yan Y-M, Bian G-Q, Zhu Q-Y, Dai J (2010) Inorg Chem 49:9731–9733. doi:10.1021/ic100088n

    Article  CAS  Google Scholar 

  105. Wang Y-H, Jiang J-B, Wang P, Sun X-L, Zhu Q-Y, Dai J (2013) Crystengcomm 15:6040–6045. doi:10.1039/c3ce40270c

    Article  CAS  Google Scholar 

  106. Vaqueiro P, Romero ML (2009) Inorg Chem 48:810–812. doi:10.1021/ic8020723

    Article  CAS  Google Scholar 

  107. Zheng N, Bu X, Lauda J, Feng P (2006) Chem Mater 18:4307–4311. doi:10.1021/cm060557z

    Article  CAS  Google Scholar 

  108. Dance IG, Choy A, Scudder ML (1984) J Am Chem Soc 106:6285–6295. doi:10.1021/ja00333a030

    Article  CAS  Google Scholar 

  109. Lee GSH, Fisher KJ, Craig DC, Scudder ML, Dance IG (1990) J Am Chem Soc 112:6435–6437. doi:10.1021/ja00173a063

    Article  CAS  Google Scholar 

  110. Lee GSH, Craig DC, Ma I, Scudder ML, Bailey TD, Dance IG (1988) J Am Chem Soc 110:4863–4864. doi:10.1021/ja00222a075

    Article  CAS  Google Scholar 

  111. Vossmeyer T, Reck G, Katsikas L, Haupt E, Schulz B, Weller H (1995) Science 267:1476–1479. doi:10.1126/science.267.5203.1476

    Article  CAS  Google Scholar 

  112. Gruber F (2012) Z Anorg Allg Chem 638:2467–2469. doi:10.1002/zaac.201200302

    Article  CAS  Google Scholar 

  113. Yang X-L, Zhang J, Ren S-B, Li Y-Z, Du H-B, You X-Z (2010) Inorg Chem Commun 13:546–549. doi:10.1016/j.inoche.2010.02.001

    Article  CAS  Google Scholar 

  114. Behrens S, Bettenhausen M, Eichhöfer A, Fenske D (1997) Angew Chem Int Ed 36:2797–2799. doi:10.1002/anie.199727971

    Article  CAS  Google Scholar 

  115. Behrens S, Fenske D (1997) Berichte Bunsen Ges Phys Chem Chem Phys 101:1588–1592

    Article  CAS  Google Scholar 

  116. Behrens S, Bettenhausen M, Deveson AC, Eichhöfer A, Fenske D, Lohde A, Woggon U (1996) Angew Chem Int Ed Engl 35:2215–2218. doi:10.1002/anie.199622151

    Article  CAS  Google Scholar 

  117. Eichhöfer A, Hampe O (2007) J Clust Sci 18:494–504. doi:10.1007/s10876-007-0121-1

    Article  CAS  Google Scholar 

  118. Lalatonne Y, Richardi J, Pileni MP (2004) Nat Mater 3:121–125. doi:10.1038/nmat1054

    Article  CAS  Google Scholar 

  119. Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) Nat Mater 7:527–538. doi:10.1038/nmat2206

    Article  CAS  Google Scholar 

  120. Bishop KJM, Wilmer CE, Soh S, Grzybowski BA (2009) Small 5:1600–1630. doi:10.1002/smll.200900358

    Article  CAS  Google Scholar 

  121. Gamez P (2014) Inorg Chem Front 1:35–43. doi:10.1039/c3qi00055a

    Article  CAS  Google Scholar 

  122. Zhao X-W, Qian L-W, Su H-C, Mo C-J, Que C-J, Zhu Q-Y, Dai J (2015) Cryst Growth Des 15:5749–5753. doi:10.1021/acs.cgd.5b00960

    Article  CAS  Google Scholar 

  123. Bag S, Trikalitis PN, Chupas PJ, Armatas GS, Kanatzidis MG (2007) Science 317:490–493. doi:10.1126/science.1142535

    Article  CAS  Google Scholar 

  124. Ferey G (2003) Angew Chem Int Ed 42:2576–2579. doi:10.1002/anie.20021621

    Article  CAS  Google Scholar 

  125. Bu XH, Zheng NF, Li YQ, Feng PY (2003) J Am Chem Soc 125:6024–6025. doi:10.1021/ja030103s

    Article  CAS  Google Scholar 

  126. Wu T, Khazhakyan R, Wang L, Bu X, Zheng S-T, Chau V, Feng P (2011) Angew Chem Int Ed 50:2536–2539. doi:10.1002/anie.201006531

    Article  CAS  Google Scholar 

  127. Zheng NF, Bu XH, Feng PY (2003) J Am Chem Soc 125:1138–1139. doi:10.1021/ja021274k

    Article  CAS  Google Scholar 

  128. Wu T, Wang X, Bu X, Zhao X, Wang L, Feng P (2009) Angew Chem Int Ed 48:7204–7207. doi:10.1002/anie.200903758

    Article  CAS  Google Scholar 

  129. Wang L, Wu T, Bu X, Zhao X, Zuo F, Feng P (2013) Inorg Chem 52:2259–2261. doi:10.1021/ic301965w

    Article  CAS  Google Scholar 

  130. Zhang Q, Zheng S-T, Bu X, Feng P (2012) Z Anorg Allg Chem 638:2470–2472. doi:10.1002/zaac.201200265

    Article  CAS  Google Scholar 

  131. Xu G, Guo P, Song S, Zhang H, Wang C (2009) Inorg Chem 48:4628–4630. doi:10.1021/ic900376h

    Article  CAS  Google Scholar 

  132. Brown ID, Altermatt D (1985) Acta Crystallogr Sect B Struct Sci 41:244–247. doi:10.1107/S0108768185002063

    Article  Google Scholar 

  133. Brese NE, O’Keeffe M (1991) Acta Crystallogr Sect B Struct Sci 47:192–197. doi:10.1107/S0108768190011041

    Article  Google Scholar 

  134. Zhang C, Liu J, Ji M, An Y (2014) Inorg Chem Commun 44:169–172. doi:10.1016/j.inoche.2014.03.028

    Article  CAS  Google Scholar 

  135. Wang C, Li YQ, Bu XH, Zheng NF, Zivkovic O, Yang CS, Feng PY (2001) J Am Chem Soc 123:11506–11507. doi:10.1021/ja011739r

    Article  CAS  Google Scholar 

  136. Xie J (2008) Inorg Chem 47:5564–5566. doi:10.1021/ic800721r

    Article  CAS  Google Scholar 

  137. Zheng NF, Bu XH, Lu HW, Chen L, Feng PY (2005) J Am Chem Soc 127:14990–14991. doi:10.1021/ja055376x

    Article  CAS  Google Scholar 

  138. Santner S, Dehnen S (2015) Inorg Chem 54:1188–1190. doi:10.1021/ic5026087

    Article  CAS  Google Scholar 

  139. Freudenmann D, Wolf S, Wolff M, Feldmann C (2011) Angew Chem Int Ed 50:11050–11060. doi:10.1002/anie.201100904

    Article  CAS  Google Scholar 

  140. Stieler R, Bublitz F, Burrow RA, Manzoni de Oliveira GN, Villetti MA, Pereira MB, Piquini P, Lang ES (2010) J Braz Chem Soc 21:2146–2154. doi:10.1590/S0103-50532010001100017

    Google Scholar 

  141. Levchenko TI, Kübel C, Huang Y, Corrigan JF (2011) Chem Eur J 17:14394–14398. doi:10.1002/chem.201102487

    Article  CAS  Google Scholar 

  142. Levchenko TI, Kübel C, Wang D, Najafabadi BK, Huang Y, Corrigan JF (2015) Chem Mater 27:3666–3682. doi:10.1021/acs.chemmater.5b00586

    Article  CAS  Google Scholar 

  143. Zhang XJ, Tian YP, Jin F, Wu JY, Xie Y, Tao XT, Jiang MH (2005) Cryst Growth Des 5:565–570. doi:10.1021/cg049695w

    Article  CAS  Google Scholar 

  144. Jiang J-B, Bian G-Q, Zhang Y-P, Luo W, Zhu Q-Y, Dai J (2011) Dalton Trans 40:9551–9556. doi:10.1039/c1dt10860c

    Article  CAS  Google Scholar 

  145. Fu M-L, Adams RD, Cristancho D, Leon-Plata P, Seminario JM (2011) Eur J Inorg Chem 660–665. doi:10.1002/ejic.201001062

    Google Scholar 

  146. Jiang J-B, Huo P, Wang P, Wu Y-Y, Bian G-Q, Zhu Q-Y, Dai J (2014) J Mater Chem C 2:2528–2533. doi:10.1039/c3tc32093f

    Article  CAS  Google Scholar 

  147. Zheng NF, Lu HW, Bu XH, Feng PY (2006) J Am Chem Soc 128:4528–4529. doi:10.1021/ja060006+

    Article  CAS  Google Scholar 

  148. Li HL, Kim J, Groy TL, O’Keeffe M, Yaghi OM (2001) J Am Chem Soc 123:4867–4868. doi:10.1021/ja010413f

    Article  CAS  Google Scholar 

  149. Vaqueiro P, Romero ML (2007) Chem Commun 3282–3284. doi:10.1039/b704724j

  150. Yue C-Y, Lei X-W, Feng L-J, Wang C, Gong Y-P, Liu X-Y (2015) Dalton Trans 44:2416–2424. doi:10.1039/c4dt02864c

    Article  CAS  Google Scholar 

  151. Pu Y-Y, Zhang X, You L-S, Bian G-Q, Zhu Q-Y, Dai J (2012) Z Anorg Allg Chem 638:2498–2502. doi:10.1002/zaac.201200274

    Article  CAS  Google Scholar 

  152. Melullis M, Clerac R, Dehnen S (2005) Chem Commun 6008–6010. doi:10.1039/b513305j

  153. Zheng NF, Bu XH, Feng PY (2002) J Am Chem Soc 124:9688–9689. doi:10.1021/ja020480p

    Article  CAS  Google Scholar 

  154. Ahamed BN, Arunachalam M, Ghosh P (2010) Inorg Chem 49:4447–4457. doi:10.1021/ic902300c

    Article  CAS  Google Scholar 

  155. You J-F, Papaefthymiou GC, Holm RH (1992) J Am Chem Soc 114:2697–2710. doi:10.1021/ja00033a050

    Article  CAS  Google Scholar 

  156. Müller A, Kögerler P, Dress AWM (2001) Coord Chem Rev 222:193–218. doi:10.1016/S0010-8545(01)00391-5

    Article  Google Scholar 

  157. Kortz U, Müller A, van Slageren J, Schnack J, Dalal NS, Dressel M (2009) Coord Chem Rev 253:2315–2327. doi:10.1016/j.ccr.2009.01.014

    Article  CAS  Google Scholar 

  158. Schäffer C, Todea AM, Bögge H, Floquet S, Cadot E, Korenev VS, Fedin VP, Gouzerh P, Müller A (2013) Dalton Trans 42:330–333. doi:10.1039/c2dt32247a

    Article  Google Scholar 

  159. Seidlhofer B, Djamil J, Näther C, Bensch W (2011) Cryst Growth Des 11:5554–5560. doi:10.1021/cg201122e

    Article  CAS  Google Scholar 

  160. Woodward P, Dahl L, Abel E, Crosse B (1965) J Am Chem Soc 87:5251–5253. doi:10.1021/ja00950a049

    Article  CAS  Google Scholar 

  161. Fenske D, Fischer A (1995) Angew Chem Int Ed Engl 34:307–309. doi:10.1002/anie.199503071

    Article  CAS  Google Scholar 

  162. Ivanov SA, Kozee MA, Merrill WA, Agarwal S, Dahl LF (2002) J Chem Soc Dalton Trans 4105–4115. doi: 10.1039/b204273h

  163. Yamashina Y, Kataoka Y, Ura Y (2014) Inorg Chem 53:3558–3567. doi:10.1021/ic403050c

    Article  CAS  Google Scholar 

  164. Zhang X, Pu Y-Y, You L-S, Bian G-Q, Zhu Q-Y, Dai J (2013) Polyhedron 52:645–649. doi:10.1016/j.poly.2012.07.092

    Article  CAS  Google Scholar 

  165. Wang Y-H, Wu J, Zhao X-W, Qian L-W, Zhu Q-Y, Dai J (2015) Chem Commun 51:10668–10671. doi:10.1039/c5cc03404c

    Article  CAS  Google Scholar 

  166. Huang-Fu S-X, Shen J-N, Lin H, Chen L, Wu L-M (2015) Chem Eur J 21:9809–9815. doi:10.1002/chem.201405719

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors YH and JFC thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for its continued support of their research programmes. TIL is most grateful to NSERC for a Canada Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yining Huang or John F. Corrigan .

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Dr. Hansgeorg Schnöckel on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Levchenko, T.I., Huang, Y., Corrigan, J.F. (2016). Large Metal Chalcogenide Clusters and Their Ordered Superstructures via Solvothermal and Ionothermal Syntheses. In: Dehnen, S. (eds) Clusters – Contemporary Insight in Structure and Bonding. Structure and Bonding, vol 174. Springer, Cham. https://doi.org/10.1007/430_2016_5

Download citation

Publish with us

Policies and ethics