Skip to main content

Experiments on Molecular Magnets for Molecular Spintronics

  • Chapter
  • First Online:
Molecular Nanomagnets and Related Phenomena

Part of the book series: Structure and Bonding ((STRUCTURE,volume 164))

Abstract

We present a review of the experimental state of the art of molecular spintronics, as obtained with molecular magnetic materials. After a brief introduction about the fundamental concepts in the field, we consider experiments performed with all the approaches attempted up to date. We eventually provide a brief discussion of the future directions and the considerable challenges that remain unexplored in the field and of the possible evolutions of this quickly developing area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baibich MN et al (1988) Phys Rev Lett 61:2472

    Article  CAS  Google Scholar 

  2. Binasch G et al (1988) Phys Rev B 39:4828

    Article  Google Scholar 

  3. Žutić I, Fabian J, Das Sarma S (2004) Rev Mod Phys 76:323

    Article  Google Scholar 

  4. Nature Materials (2012) http://www.nature.com/nmat/insight/spintronics/index.html

  5. Felser C, Fecher GH (eds) (2013) Spintronics: from materials to devices, vol XXI. Springer, Netherlands, p 369

    Google Scholar 

  6. Popa PL et al (2014) Proc Natl Acad Sci USA 111:10433

    Article  CAS  Google Scholar 

  7. Seneor P, Bernand-Mantel A, Petroff F, Phys J (2007) Condens Matter 19(165222)

    Google Scholar 

  8. Cuevas JC, Sheer E (2010) Molecular electronics: an introduction to theory and experiment, World scientific series in nanotechnology and nanoscience. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  9. Launay JP, Verdaguer M (2014) Electrons in molecules: from basic principles to molecular electronics. Oxford University Press, Oxford

    Google Scholar 

  10. Kouwenhoven LP et al (2001) Rep Prog Phys 64:701

    Article  CAS  Google Scholar 

  11. Nature Nanotechnology (2013) http://www.nature.com/nnano/focus/molecular-electronics/index.html

  12. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, New York

    Book  Google Scholar 

  13. Liang W et al (2002) Nature 417:725–729

    Article  CAS  Google Scholar 

  14. Kastner MA (1993) Phys Today 46:24

    Article  CAS  Google Scholar 

  15. Domingo N et al (2012) Chem Soc Rev 41:258–302

    Article  CAS  Google Scholar 

  16. Park H et al (1999) Appl Phys Lett 75:301

    Article  CAS  Google Scholar 

  17. Bogani L, Wernsdorfer W (2008) Nat Mater 7:179–186

    Article  CAS  Google Scholar 

  18. Cornia A et al (2011) Chem Soc Rev 40:3076

    Article  CAS  Google Scholar 

  19. Mannini M et al (2008) Chemistry 14:7530–7535

    Article  CAS  Google Scholar 

  20. Barth JV et al (2005) Nature 437:671

    Article  CAS  Google Scholar 

  21. Ertl G (2008) Angew Chem Int Ed 47:3524

    Article  CAS  Google Scholar 

  22. Buchholtz J et al (1977) J Chem Phys 66:573–580

    Article  Google Scholar 

  23. Kanai M et al (1995) Surf Sci 329:L619–L623

    Article  CAS  Google Scholar 

  24. Lippel PH et al (1989) Phys Rev Lett 62:171

    Article  CAS  Google Scholar 

  25. Warner M et al (2013) Nature 503:504–508

    Article  CAS  Google Scholar 

  26. Kahle S et al (2011) Nano Lett 12:518–521

    Article  Google Scholar 

  27. Lämmle K et al (2010) Nano Lett 10:2965

    Article  Google Scholar 

  28. Khajetoorians AA et al (2013) Science 339:55–59

    Article  CAS  Google Scholar 

  29. Liu J et al (2013) J Am Chem Soc 135:651

    Article  CAS  Google Scholar 

  30. Koivisto BD, Hicks RG (2005) Coord Chem Rev 249:2612–2630

    Article  CAS  Google Scholar 

  31. Zhang Y et al (2013) Nat Commun 4:2110

    Google Scholar 

  32. Caneschi A et al (1991) Prog Inorg Chem 39:331–429

    Article  Google Scholar 

  33. Ishikawa N et al (2003) J Am Chem Soc 125:8694–8695

    Article  CAS  Google Scholar 

  34. Katoh K et al (2009) J Am Chem Soc 131:9967–9976

    Article  CAS  Google Scholar 

  35. Katoh K et al (2010) Dalton Trans 39:4708–4723

    Article  CAS  Google Scholar 

  36. Katoh K et al (2012) Chem Asian J 7:1154

    Article  CAS  Google Scholar 

  37. Komeda T et al (2013) ACS Nano 7:1092

    Article  CAS  Google Scholar 

  38. Vitali L et al (2008) Nano Lett 8:3364

    Article  CAS  Google Scholar 

  39. Liu L et al. http://arxiv.org/ftp/arxiv/papers/1310/1310.8436.pdf

  40. Müllegger S et al. http://arxiv.org/pdf/1403.7035.pdf

  41. Miyamaki T (2012) Nat Commun 3:938

    Article  Google Scholar 

  42. Gopakumar TG et al (2012) Angew Chem Int Ed 52:3796

    Article  Google Scholar 

  43. Komeda T et al (2011) Nat Commun 2:217

    Article  Google Scholar 

  44. Loth S et al (2012) Science 335:196

    Article  CAS  Google Scholar 

  45. Heintze E et al (2013) Nat Mater 12:202

    Article  CAS  Google Scholar 

  46. Heersche HB et al (2006) Phys Rev Lett 96:206801

    Article  CAS  Google Scholar 

  47. Jo MH et al (2006) Nano Lett 6:2014

    Article  CAS  Google Scholar 

  48. Mannini M et al (2008) Chem Eur J 14:7530

    Article  CAS  Google Scholar 

  49. Park J et al (2002) Nature 417:722–725

    Article  CAS  Google Scholar 

  50. Mannini M et al (2009) Phys Rev Lett 8:194

    CAS  Google Scholar 

  51. Mannini M et al (2010) Nature 468:417

    Article  CAS  Google Scholar 

  52. Accorsi S et al (2006) J Am Chem Soc 128:4742

    Article  CAS  Google Scholar 

  53. Bartolomé J et al (eds) (2014) Molecular magnets, nanoscience and technology. Springer, Berlin

    Google Scholar 

  54. Zyazin AS et al (2011) Synth Met 161:591

    Article  CAS  Google Scholar 

  55. Burzuri E et al (2012) Phys Rev Lett 109:147203

    Article  CAS  Google Scholar 

  56. Misiorny M et al. http://arxiv.org/pdf/1407.5265v1.pdf

  57. Zyazin AS et al (2010) Nano Lett 10:3307–3311

    Article  CAS  Google Scholar 

  58. Vincent R et al (2012) Nature 488:357

    Article  CAS  Google Scholar 

  59. Thiele S et al (2014) Science 344:6188

    Article  Google Scholar 

  60. Wagner S et al (2013) Nat Nanotechnol 8:575

    Article  CAS  Google Scholar 

  61. Shimada H et al (2003) J Appl Phys 93:8259–8264

    Article  CAS  Google Scholar 

  62. Urdampilleta M (2011) Nat Mater 10:502

    Article  CAS  Google Scholar 

  63. Sun YP et al (2002) Acc Chem Res 35:1096–1104

    Article  CAS  Google Scholar 

  64. Balasubramanian K, Burghard M (2005) Small 1:180–192

    Article  CAS  Google Scholar 

  65. Bogani L et al (2009) Angew Chem Int Ed 48:746–750

    Article  CAS  Google Scholar 

  66. Klyatskaya S et al (2009) J Am Chem Soc 131:15143–15151

    Article  Google Scholar 

  67. Da Jiang S et al (2012) Sci China Chem 55:867

    Article  CAS  Google Scholar 

  68. Bosch-Navarro C et al (2012) Adv Funct Mater 22:373

    Google Scholar 

  69. Castro Neto AH et al (2009) Rev Mod Phys 81:109–162

    Article  CAS  Google Scholar 

  70. Das Sarma S et al (2011) Rev Mod Phys 83:407–470

    Article  CAS  Google Scholar 

  71. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  72. Candini A et al (2011) Nano Lett 11:2634–2639

    Article  CAS  Google Scholar 

  73. Cervetti C et al (to appear) Nat Mater

    Google Scholar 

  74. Komatsu H et al (2010) J Am Chem Soc 132:4528–4529

    Article  CAS  Google Scholar 

  75. Baniodeh A et al Adv Funct Mater 24:6280–6290. doi:10.1002/adfm.201400336

  76. Raman KV et al (2013) Nature 493:509–513

    Article  CAS  Google Scholar 

  77. Cervetti C et al (2014) Dalton Trans 43:4220–4232

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from German DFG, the BW Stiftung (Kompetenznetz Funktionelle Nanostrukturen), the AvH Stiftung (Sofja Kovalevskaja Award), the IMPRS-AM and EU ERC-StG-338258-“OptoQMol”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lapo Bogani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogani, L. (2014). Experiments on Molecular Magnets for Molecular Spintronics. In: Gao, S. (eds) Molecular Nanomagnets and Related Phenomena. Structure and Bonding, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_170

Download citation

Publish with us

Policies and ethics