Skip to main content

Quantum Computation with Molecular Nanomagnets: Achievements, Challenges, and New Trends

  • Chapter
  • First Online:
Molecular Nanomagnets and Related Phenomena

Part of the book series: Structure and Bonding ((STRUCTURE,volume 164))

Abstract

Molecular nanomagnets exhibit quanto-mechanical properties that can be nicely tailored at synthetic level: superposition and entanglement of quantum states can be created with molecular spins whose manipulation can be done in a timescale shorter than their decoherence time, if the molecular environment is controlled in a proper way. The challenge of quantum computation is to exploit the similarities between the coherent manipulation of molecular spins and algorithms used to process data and solve problems. In this chapter we shall firstly introduce basic concepts, stressing analogies between the physics and the chemistry of molecular nanomagnets and the science of computing. Then we shall review main achievements obtained in the first decade of this field and present challenges for the next future. In particular we shall focus on two emerging topics: quantum simulators and hybrid systems made by resonant cavities and molecular nanomagnets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nielsen MA, Chuang IL (2010) Quantum computation and quantum information. Cambridge University Press, Cambridge

    Google Scholar 

  2. Bandyopadhyay S, Cahay M (2008) Introduction to spintronics. CRC, Boca Raton

    Google Scholar 

  3. Blundell S, Thouless D (2001) Magnetism in condensed matter, vol 1. Oxford University Press, New York

    Google Scholar 

  4. Vandersypen LM, Steffen M, Breyta G, Yannoni CS, Sherwood MH, Chuang IL (2001) Nature 414:883

    CAS  Google Scholar 

  5. Xu N, Zhu J, Lu D, Zhou X, Peng X, Du J (2012) Phys Rev Lett 108:130501

    Google Scholar 

  6. Zurek W (2003) Rev Mod Phys 75:715

    Google Scholar 

  7. Schlosshauer M (2005) Rev Mod Phys 76:1267

    Google Scholar 

  8. Stamp PC, Gaita-Arino A (2009) J Mater Chem 19:1718

    CAS  Google Scholar 

  9. Takahashi S, Tupitsyn I, van Tol J, Beedle C, Hendrickson D, Stamp P (2011) Nature 476:76

    CAS  Google Scholar 

  10. Prokof′ev N, Stamp P (2000) Rep Prog Phys 63:669

    Google Scholar 

  11. Morello A, Stamp P, Tupitsyn IS (2006) Phys Rev Lett 97:207206

    Google Scholar 

  12. Troiani F, Bellini V, Affronte M (2008) Phys Rev B 77:054428

    Google Scholar 

  13. Szallas A, Troiani F (2010) Phys Rev B 82:224409

    Google Scholar 

  14. Troiani F, Stepanenko D, Loss D (2012) Phys Rev B 86:161409

    Google Scholar 

  15. Leggett AJ (1980) Prog Theor Phys Suppl 69:80

    Google Scholar 

  16. Dür W, Simon C, Cirac JI (2002) Phys Rev Lett 89:210402

    Google Scholar 

  17. Björk G, Mana PGL (2004) J Opt B Quantum Semiclassical Opt 6:429

    Google Scholar 

  18. Korsbakken JI, Whaley KB, Dubois J, Cirac JI (2007) Phys Rev A 75:042106

    Google Scholar 

  19. Fröwis F, Dür W (2012) New J Phys 14:093039

    Google Scholar 

  20. Troiani F, Zanardi P (2013) Phys Rev B 88:094413

    Google Scholar 

  21. Horodecki R, Horodecki P, Horodecki M, Horodecki K (2009) Rev Mod Phys 81:865

    CAS  Google Scholar 

  22. Gühne O, Tóth G (2009) Phys Rep 474:1

    Google Scholar 

  23. Troiani F, Bellini V, Candini A, Lorusso G, Affronte M (2010) Nanotechnology 21:274009

    CAS  Google Scholar 

  24. Baker ML, Guidi T, Carretta J, Ollivier S, Mutka H, Güdel HU, Timco GA, McInnes EJL, Amoretti G, Winpenny REP, Santini P (2012) Nat Phys 8:906

    CAS  Google Scholar 

  25. Siloi I, Troiani F (2012) Phys Rev B 86:224404

    Google Scholar 

  26. Lorusso G, Corradini V, Ghirri A, Biagi R, del Pennino U, Siloi I, Troiani F, Timco G, Winpenny REP, Affronte M (2012) Phys Rev B 86:184424

    Google Scholar 

  27. Troiani F, Siloi I (2012) Phys Rev A 86:032330

    Google Scholar 

  28. Siloi I, Troiani F (2013) Eur Phys J B 86

    Google Scholar 

  29. Candini A, Lorusso G, Troiani F, Ghirri A, Carretta S, Santini P, Amoretti G, Muryn C, Tuna F, Timco G, McInnes EJL, Winpenny REP, Wernsdorfer W, Affronte M (2010) Phys Rev Lett 104:037203

    CAS  Google Scholar 

  30. Troiani F, Carretta S, Santini P (2013) Phys Rev B 88:195421

    Google Scholar 

  31. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, New York

    Google Scholar 

  32. Bellini V, Lorusso G, Candini A, Wernsdorfer W, Faust T, Timco G, Winpenny R, Affronte M (2011) Phys Rev Lett 106:227205

    CAS  Google Scholar 

  33. Domingo N, Bellido E, Ruiz-Molina D (2012) Chem Soc Rev 41:258

    CAS  Google Scholar 

  34. DiVincenzo DP (2000) Fortschr Phys 48:771

    Google Scholar 

  35. Collauto A, Mannini M, Sorace L, Barbon A, Brustolon M, Gatteschi D (2012) J Mater Chem 22:22272

    CAS  Google Scholar 

  36. Sato K, Nakazawa S, Rahimi R, Ise T, Nishida S, Yoshino T, Mori N, Toyota K, Shiomi D, Yakiyama Y et al (2009) J Mater Chem 19:3739

    CAS  Google Scholar 

  37. Nakazawa S, Nishida S, Ise T, Yoshino T, Mori N, Rahimi RD, Sato K, Morita Y, Toyota K, Shiomi D, Kitagawa M, Hara H, Carl P, Hfer P, Takui T (2012) Angew Chem Int Ed 51:9860

    CAS  Google Scholar 

  38. Du J, Rong X, Zhao N, Wang Y, Yang J, Liu RB (2009) Nature 461:1265

    CAS  Google Scholar 

  39. Martínez-Pérez MJ, Cardona-Serra S, Schlegel C, Moro F, Alonso PJ, Prima-García H, Clemente-Juan JM, Evangelisti M, Gaita-Ariño A, Sesé J, van Slageren J, Coronado E, Luis F (2012) Phys Rev Lett 108:247213

    Google Scholar 

  40. Ishikawa N, Sugita M, Ishikawa T, Koshihara SY, Kaizu Y (2004) J Phys Chem B 108:11265

    CAS  Google Scholar 

  41. Ishikawa N, Sugita M, Wernsdorfer W (2005) Angew Chem Int Ed 44:2931

    CAS  Google Scholar 

  42. Vincent R, Klyatskaya S, Ruben M, Wernsdorfer W, Balestro F (2012) Nature 488:357

    CAS  Google Scholar 

  43. Leuenberger MN, Loss D (2001) Nature 410:789

    CAS  Google Scholar 

  44. Tejada J, Chudnovsky E, Del Barco E, Hernandez J, Spiller T (2001) Nanotechnology 12:181

    CAS  Google Scholar 

  45. Meier F, Levy J, Loss D (2003) Phys Rev B 68:134417

    Google Scholar 

  46. Troiani F, Ghirri A, Affronte M, Carretta S, Santini P, Amoretti G, Piligkos S, Timco G, Winpenny R (2005) Phys Rev Lett 94:207208

    CAS  Google Scholar 

  47. Timco GA, Faust TB, Tuna F, Winpenny RE (2011) Chem Soc Rev 40:3067

    CAS  Google Scholar 

  48. Ardavan A, Rival O, Morton JJ, Blundell SJ, Tyryshkin AM, Timco GA, Winpenny RE (2007) Phys Rev Lett 98:057201

    Google Scholar 

  49. Wedge C, Timco G, Spielberg E, George R, Tuna F, Rigby S, McInnes E, Winpenny R, Blundell S, Ardavan A (2012) Phys Rev Lett 108:107204

    CAS  Google Scholar 

  50. Corradini V, Ghirri A, del Pennino U, Biagi R, Milway VA, Timco G, Tuna F, Winpenny RE, Affronte M (2010) Dalton Trans 39:4928

    CAS  Google Scholar 

  51. Ghirri A, Corradini V, Bellini V, Biagi R, del Pennino U, De Renzi V, Cezar JC, Muryn CA, Timco GA, Winpenny RE et al (2011) ACS Nano 5:7090

    CAS  Google Scholar 

  52. Timco GA, Carretta S, Troiani F, Tuna F, Pritchard RJ, Muryn CA, McInnes EJ, Ghirri A, Candini A, Santini P et al (2009) Nat Nanotechnol 4:173

    CAS  Google Scholar 

  53. Yang J, Wang Y, Wang Z, Rong X, Duan CK, Su JH, Du J (2012) Phys Rev Lett 108:230501

    Google Scholar 

  54. Choi KY, Wang Z, Nojiri H, van Tol J, Kumar P, Lemmens P, Bassil B, Kortz U, Dalal N (2012) Phys Rev Lett 108:067206

    Google Scholar 

  55. Takahashi S, van Tol J, Beedle CC, Hendrickson DN, Brunel LC, Sherwin MS (2009) Phys Rev Lett 102:087603

    Google Scholar 

  56. Schlegel C, van Slageren J, Manoli M, Brechin E, Dressel M (2008) Phys Rev Lett 101:147203

    CAS  Google Scholar 

  57. Hill S, Edwards R, Aliaga-Alcalde N, Christou G (2003) Science 302:1015

    CAS  Google Scholar 

  58. Wernsdorfer W, Aliaga-Alcalde N, Hendrickson DN, Christou G (2002) Nature 416:406

    Google Scholar 

  59. Luis F, Repollés A, Martínez-Pérez MJ, Aguilà D, Roubeau O, Zueco D, Alonso PJ, Evangelisti M, Camón A, Sesé J, Barrios LA, Aromí G (2011) Phys Rev Lett 107:117203

    CAS  Google Scholar 

  60. Sañudo EC, Cauchy T, Ruiz E, Laye RH, Roubeau O, Teat SJ, Aromí G (2007) Inorg Chem 46:9045

    Google Scholar 

  61. Barrios L, Aguil D, Roubeau O, Gamez P, Ribas-Ario J, Teat S, Aromi G (2009) Chem Eur J 15:11235

    CAS  Google Scholar 

  62. Brown KL, Munro WJ, Kendon VM (2010) Entropy 12:2268

    CAS  Google Scholar 

  63. Buluta I, Nori F (2009) Science 326:108

    CAS  Google Scholar 

  64. Feynman RP (1982) Int J Theor Phys 21:467

    Google Scholar 

  65. Lloyd S et al (1996) Science 1073–1077

    Google Scholar 

  66. Jones J (2000) Fortschr Phys 48:909

    CAS  Google Scholar 

  67. Brown KR, Clark RJ, Chuang IL (2006) Phys Rev Lett 97:050504

    Google Scholar 

  68. Negrevergne C, Somma R, Ortiz G, Knill E, Laflamme R (2005) Phys Rev A 71:032344

    Google Scholar 

  69. Somaroo S, Tseng CH, Havel TF, Laflamme R, Cory DG (1999) Phys Rev Lett 82:5381

    CAS  Google Scholar 

  70. Deng XL, Porras D, Cirac JI (2005) Phys Rev A 72:063407

    Google Scholar 

  71. Porras D, Cirac JI (2004) Phys Rev Lett 93:263602

    CAS  Google Scholar 

  72. Cai J, Retzker A, Jelezko F, Plenio MB (2013) Nat Phys 9:168

    CAS  Google Scholar 

  73. Gaudreau L, Studenikin SA, Sachrajda AS, Zawadzki P, Kam A, Lapointe J, Korkusinski M, Hawrylak P (2006) Phys Rev Lett 97:036807

    CAS  Google Scholar 

  74. Vidan A, Westervelt R, Stopa M, Hanson M, Gossard A (2004) Appl Phys Lett 85:3602

    CAS  Google Scholar 

  75. Santini P, Carretta S, Troiani F, Amoretti G (2011) Phys Rev Lett 107:230502

    CAS  Google Scholar 

  76. Whitehead GF, Cross B, Carthy L, Milway VA, Rath H, Fernandez A, Heath SL, Muryn CA, Pritchard RG, Teat SJ et al (2013) Chem Commun 49:7195

    CAS  Google Scholar 

  77. Ueda A, Suzuki S, Yoshida K, Fukui K, Sato K, Takui T, Nakasuji K, Morita Y (2013) Angew Chem Int Ed 52:4795

    CAS  Google Scholar 

  78. Hodges JS, Yang JC, Ramanathan C, Cory DG (2008) Phys Rev A 78:010303

    Google Scholar 

  79. Zhang Y, Ryan CA, Laflamme R, Baugh J (2011) Phys Rev Lett 107:170503

    Google Scholar 

  80. Haroche S, Raimond JM (2006) Exploring the quantum: atoms, cavities and photons. Oxford University Press, Oxford

    Google Scholar 

  81. Wallraff A, Schuster DI, Blais A, Frunzio L, Huang RS, Majer J, Kumar S, Girvin SM, Schoelkopf RJ (2004) Nature 431:162

    CAS  Google Scholar 

  82. Xiang ZL, Ashhab S, You JQ, Nori F (2013) Rev Mod Phys 85:623

    CAS  Google Scholar 

  83. Rabi I (1937) Phys Rev 51:652

    CAS  Google Scholar 

  84. Abe E, Wu H, Ardavan A, Morton JJ (2011) Appl Phys Lett 98:251108

    Google Scholar 

  85. Dicke RH (1954) Phys Rev 93:99

    CAS  Google Scholar 

  86. Tavis M, Cummings FW (1968) Phys Rev 170:379

    Google Scholar 

  87. Chiorescu I, Groll N, Bertaina S, Mori T, Miyashita S (2010) Phys Rev B 82:024413

    Google Scholar 

  88. Tyryshkin AM, Tojo S, Morton JJ, Riemann H, Abrosimov NV, Becker P, Pohl HJ, Schenkel T, Thewalt ML, Itoh KM et al (2011) Nat Mater 11:143

    Google Scholar 

  89. Rabl P, DeMille D, Doyle JM, Lukin MD, Schoelkopf RJ, Zoller P (2006) Phys Rev Lett 97:033003

    CAS  Google Scholar 

  90. Tordrup K, Negretti A, Mølmer K (2008) Phys Rev Lett 101:040501

    Google Scholar 

  91. Imamoğlu A (2009) Phys Rev Lett 102:083602

    Google Scholar 

  92. Wesenberg JH, Ardavan A, Briggs GAD, Morton JJL, Schoelkopf RJ, Schuster DI, Mølmer K (2009) Phys Rev Lett 103:070502

    CAS  Google Scholar 

  93. Simon C, Afzelius M, Appel J, de La Giroday AB, Dewhurst S, Gisin N, Hu C, Jelezko F, Kröll S, Müller J et al (2010) Eur Phys J D 58:1

    CAS  Google Scholar 

  94. Schuster DI, Sears AP, Ginossar E, DiCarlo L, Frunzio L, Morton JJL, Wu H, Briggs GAD, Buckley BB, Awschalom DD, Schoelkopf RJ (2010) Phys Rev Lett 105:140501

    CAS  Google Scholar 

  95. Kubo Y, Ong FR, Bertet P, Vion D, Jacques V, Zheng D, Dréau A, Roch JF, Auffeves A, Jelezko F, Wrachtrup J, Barthe MF, Bergonzo P, Esteve D (2010) Phys Rev Lett 105:140502

    CAS  Google Scholar 

  96. Amsüss R, Koller C, Nöbauer T, Putz S, Rotter S, Sandner K, Schneider S, Schramböck M, Steinhauser G, Ritsch H, Schmiedmayer J, Majer J (2011) Phys Rev Lett 107:060502

    Google Scholar 

  97. Probst S, Rotzinger H, Wünsch S, Jung P, Jerger M, Siegel M, Ustinov AV, Bushev PA (2013) Phys Rev Lett 110:157001

    CAS  Google Scholar 

  98. Huebl H, Zollitsch C, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein ST (2013) Phys Rev Lett 111:127003

    Google Scholar 

  99. Majer J, Chow J, Gambetta J, Koch J, Johnson B, Schreier J, Frunzio L, Schuster D, Houck A, Wallraff A et al (2007) Nature 449:443

    CAS  Google Scholar 

  100. DiCarlo L, Chow J, Gambetta J, Bishop LS, Johnson B, Schuster D, Majer J, Blais A, Frunzio L, Girvin S et al (2009) Nature 460:240

    CAS  Google Scholar 

  101. Houck A, Schuster D, Gambetta J, Schreier J, Johnson B, Chow J, Frunzio L, Majer J, Devoret M, Girvin S et al (2007) Nature 449:328

    CAS  Google Scholar 

  102. Schuster D, Houck A, Schreier J, Wallraff A, Gambetta J, Blais A, Frunzio L, Majer J, Johnson B, Devoret M et al (2007) Nature 445:515

    CAS  Google Scholar 

  103. Hofheinz M, Weig E, Ansmann M, Bialczak RC, Lucero E, Neeley M, Oconnell A, Wang H, Martinis JM, Cleland A (2008) Nature 454:310

    CAS  Google Scholar 

  104. Filipp S, Maurer P, Leek PJ, Baur M, Bianchetti R, Fink JM, Göppl M, Steffen L, Gambetta JM, Blais A, Wallraff A (2009) Phys Rev Lett 102:200402

    CAS  Google Scholar 

  105. Wu H, George RE, Wesenberg JH, Mølmer K, Schuster DI, Schoelkopf RJ, Itoh KM, Ardavan A, Morton JJL, Briggs GAD (2010) Phys Rev Lett 105:140503

    Google Scholar 

  106. Zhu X, Saito S, Kemp A, Kakuyanagi K, Karimoto SI, Nakano H, Munro WJ, Tokura Y, Everitt MS, Nemoto K et al (2011) Nature 478:221

    CAS  Google Scholar 

  107. Julsgaard B, Grezes C, Bertet P, Mølmer K (2013) Phys Rev Lett 110:250503

    Google Scholar 

  108. Clauss C, Bothner D, Koelle D, Kleiner R, Bogani L, Scheffler M, Dressel M (2013) Appl Phys Lett 102:162601

    Google Scholar 

  109. Jenkins M, Hmmer T, Martnez-Prez MJ, Garca-Ripoll J, Zueco D, Luis F (2013) New J Phys 15:095007

    Google Scholar 

  110. Troiani F, Affronte M, Carretta S, Santini P, Amoretti G (2005) Phys Rev Lett 94:190501

    Google Scholar 

  111. Carretta S, Chiesa A, Troiani F, Gerace D, Amoretti G, Santini P (2013) Phys Rev Lett 111:110501

    CAS  Google Scholar 

  112. Trif M, Troiani F, Stepanenko D, Loss D (2008) Phys Rev Lett 101:217201

    Google Scholar 

  113. Trif M, Troiani F, Stepanenko D, Loss D (2010) Phys Rev B 82:045429

    Google Scholar 

  114. Nossa JF, Islam MF, Canali CM, Pederson MR (2012) Phys Rev B 85:085427

    Google Scholar 

  115. Cohen-Tannoudji GGC, Dupont-Roc J (2004) Atom-photon interactions. Wiley-VCH, Weinheim

    Google Scholar 

  116. Gerry CC, Knight PL (2004) Introductory quantum optics. Cambridge University Press, Cambridge

    Google Scholar 

  117. Jaynes ET, Cummings FW (1963) Proc IEEE 51:89

    Google Scholar 

  118. Weil JA, Bolton JR (2008) Electron paramagnetic resonance, 2nd edn. Wiley, New York

    Google Scholar 

  119. Gupta K, Garg R, Bahl I, Bhartia P (1996) Microstrip lines and slotlines. Artech House, Boston

    Google Scholar 

  120. Pozar DM (1998) Microwave engineering. Wiley, New York

    Google Scholar 

  121. Lancaster MJ (1997) Passive microwave device applications of high-temperature superconductors. Cambridge University Press, Cambridge

    Google Scholar 

  122. Vissers MR, Gao J, Wisbey DS, Hite DA, Tsuei CC, Corcoles AD, Steffen M, Pappas DP (2010) Appl Phys Lett 97:232509

    Google Scholar 

  123. Benningshof O, Mohebbi H, Taminiau I, Miao G, Cory D (2013) J Magn Reson 230:84

    CAS  Google Scholar 

  124. Song C, Heitmann TW, DeFeo MP, Yu K, McDermott R, Neeley M, Martinis JM, Plourde BLT (2009) Phys Rev B 79:174512

    Google Scholar 

  125. Song C, DeFeo M, Yu K, Plourde B (2009) Appl Phys Lett 95:232501

    Google Scholar 

  126. Bothner D, Gaber T, Kemmler M, Koelle D, Kleiner R (2011) Appl Phys Lett 98:102504

    Google Scholar 

  127. Bothner D, Gaber T, Kemmler M, Koelle D, Kleiner R, Wünsch S, Siegel M (2012) Phys Rev B 86:014517

    Google Scholar 

  128. Creedon DL, Reshitnyk Y, Farr W, Martinis JM, Duty TL, Tobar ME (2011) Appl Phys Lett 98:222903

    Google Scholar 

  129. Frunzio L, Wallraff A, Schuster D, Majer J, Schoelkopf R (2005) IEEE Trans Appl Supercond 15:860

    Google Scholar 

  130. Barends R, Vercruyssen N, Endo A, De Visser P, Zijlstra T, Klapwijk T, Diener P, Yates S, Baselmans J (2010) Appl Phys Lett 97:023508

    Google Scholar 

  131. Mazin B (2004) Microwave kinetic inductance detectors. Ph.D. thesis, California Institute of Technology

    Google Scholar 

  132. Gao J, Daal M, Vayonakis A, Kumar S, Zmuidzinas J, Sadoulet B, Mazin BA, Day PK, Leduc HG (2008) Appl Phys Lett 92:152505

    Google Scholar 

  133. Wang H, Hofheinz M, Wenner J, Ansmann M, Bialczak R, Lenander M, Lucero E, Neeley M, OConnell A, Sank D et al (2009) Appl Phys Lett 95:233508

    Google Scholar 

  134. Lindström T, Healey JE, Colclough MS, Muirhead CM, Tzalenchuk AY (2009) Phys Rev B 80:132501

    Google Scholar 

  135. Macha P, van Der Ploeg S, Oelsner G, Ilichev E, Meyer HG, Wunsch S, Siegel M (2010) Appl Phys Lett 96:062503

    Google Scholar 

  136. Goppl M, Fragner A, Baur M, Bianchetti R, Filipp S, Fink J, Leek P, Puebla G, Steffen L, Wallraff A (2008) J Appl Phys 104:113904

    Google Scholar 

  137. Osborn K, Strong J, Sirois A, Simmonds R (2007) IEEE Trans Appl Supercond 17:166

    CAS  Google Scholar 

  138. Castellanos-Beltran M, Lehnert K (2007) Appl Phys Lett 91:083509

    Google Scholar 

  139. Palacios-Laloy A, Nguyen F, Mallet F, Bertet P, Vion D, Esteve D (2008) J Low Temp Phys 151:1034

    CAS  Google Scholar 

  140. Sandberg M, Wilson C, Persson F, Bauch T, Johansson G, Shumeiko V, Duty T, Delsing P (2008) Appl Phys Lett 92:203501

    Google Scholar 

  141. Poole CP (1983) Electron spin resonance: a comprehensive treatise on experimental techniques. Wiley, New York

    Google Scholar 

  142. Johansson B, Haraldson S, Pettersson L, Beckman O (1974) Rev Sci Instrum 45:1445

    CAS  Google Scholar 

  143. Wallace W, Silsbee R (1991) Rev Sci Instrum 62:1754

    CAS  Google Scholar 

  144. Torrezan A, Mayer Alegre T, Medeiros-Ribeiro G (2009) Rev Sci Instrum 80:075111

    CAS  Google Scholar 

  145. Narkowicz RSR, Suter D (2005) J Magn Reson 175:275284

    Google Scholar 

  146. Narkowicz R, Suter D, Niemeyer I (2008) Rev Sci Instrum 79:084702

    CAS  Google Scholar 

  147. Twig Y, Suhovoy E, Blank A (2010) Rev Sci Instrum 81:104703

    Google Scholar 

  148. Goglio G, Pignard S, Radulescu A, Piraux L, Huynen I, Vanhoenacker D, Vander Vorst A (1999) Appl Phys Lett 75:1769

    CAS  Google Scholar 

  149. Giesen F, Podbielski J, Korn T, Steiner M, Van Staa A, Grundler D (2005) Appl Phys Lett 86:112510

    Google Scholar 

  150. Liu Y, Chen L, Tan C, Liu H, Ong C (2005) Rev Sci Instrum 76:063911

    Google Scholar 

  151. Henderson J, Ramsey C, Quddusi H, Del Barco E (2008) Rev Sci Instrum 79:074704

    CAS  Google Scholar 

  152. Bushev P, Feofanov AK, Rotzinger H, Protopopov I, Cole JH, Wilson CM, Fischer G, Lukashenko A, Ustinov AV (2011) Phys Rev B 84:060501

    Google Scholar 

  153. Malissa H, Schuster D, Tyryshkin A, Houck A, Lyon S (2013) Rev Sci Instrum 84:025116

    CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. A. Candini, Dr. V. Corradini, Dr. V. Bellini, Dr. I. Siloi (CNR and University of Modena and Reggio E., I), Prof. S. Carretta, Prof. P. Santini and Prof. G. Amoretti (University of Parma, I), Prof. A. Lascialfari (University of Milano, I), Dr. D. Gerace and Dr. S. Sanna (University of Pavia, I), Prof. A. Cuccoli, and Dr. P. Verrucchi (University of Firenze, I) for stimulating discussions. We also wish to thank Dr. Grigore Timco and Prof. Richard Winpenny (University of Manchester, UK) for all their hints and synthesis and structural characterization of molecular spin clusters. This work was supported by FIRB project RBFR12RPD1 of the Italian Ministry of Research and by the US AFOSR/AOARD program, contract FA2386-13-1-4029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Affronte .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Quantum Description of the Spin Dynamics in a Resonant Cavity

In this section we provide further formalism to describe the interaction of single spin with a quantized electromagnetic field following the quantum approach [80, 87, 115]. We consider a cavity in which the field has a single harmonic mode of frequency ω. The intensity of the electromagnetic field determines the number n of photons in the cavity and we consider the situation for which few photons are present in the resonator. Let’s assume that the quality factor of the cavity Q is very high so that the photons lifetime is very long. Such a quantized electromagnetic field can be described as \( {\mathrm{\mathcal{H}}}_c=\hslash \omega\;\left({a}^{\dagger }a+{\scriptscriptstyle \frac{1}{2}}\right) \), where a and a are the creation and annihilation operators for photons, in analogy with a quantum one-dimensional oscillator [116]. The dipolar spin–photon interaction ℋ cs  = − μ ⋅ B can be written as:

$$ {\mathcal{H}}_{cs}=\hslash {g}_c\left[\left(\mathbf{e}\cdot \mathbf{S}\right)a+\left({\mathbf{e}}^{*}\cdot \mathbf{S}\right){a}^{\dagger}\right]. $$
(12)

For this expression we make use of the Rotating Wave Approximation (RWA) that consists in neglecting fast-oscillating, non-energy-conserving terms which play a minor role in the dynamics of the system. The prefactor g c is the coupling strength of the magnetic moment with the oscillating magnetic component of the electromagnetic field B 1(t) The unitary vector e describes the polarization of B 1(t), which can be conveniently chosen to obtain the circular polarization σ + or σ with respect to the static field B 0 along the z-axis. Being S ± = S x  ± iS y , we have thus

$$ {\mathrm{\mathcal{H}}}_{\sigma +}=\hslash {g}_c\left(a{S}_{+}+{a}^{\dagger }{S}_{-}\right), $$
(13)

for photons with helicity +ћ along z, and

$$ {\mathrm{\mathcal{H}}}_{\sigma -}=\hslash {g}_c\left(a{S}_{-}+{a}^{\dagger }{S}_{+}\right), $$
(14)

for photons with helicity −ћ along z. The Jaynes–Cummings model [117] considers the full Hamiltonian ℋ = ℋ c  + ℋ s  + ℋ cs , i.e.:

$$ \mathrm{\mathcal{H}}=\hslash \omega \left({a}^{\dagger }a+\frac{1}{2}\right)+\hslash {\omega}_0{S}_z+\hslash {g}_c\left(a{S}_{\pm }+{a}^{\dagger }{S}_{\mp}\right). $$
(15)

being ℋ s  = μ B B 0 S z  = ℏω 0 S z the term describing the spin precession about B 0. The interaction term ℋ cs imposes the conservation of the z component of the total angular momentum since it has nonzero matrix element only between eigenstates of ℋ c  + ℋ s that are characterized by the same value of m s  + n. This reproduces the selection rules Δm s  = 1 for σ + and Δm s  = − 1 for σ expected for conventional perpendicular-mode EPR [118]. Since \( {m}_s=\pm {\scriptscriptstyle \frac{1}{2}} \), we have only two possible values − 1/2 + n + 1 and + 1/2 + n, so the diagonalization of Eq. (15) can be carried out separately in each of the two-dimensional subspaces. It is convenient to make use of the dressed atom approach to describe the evolution of an isolated system composed by n photons and one spin [115]. Each subspace is represented by the photon plus spin states:

$$ \left|{\varphi}_a\right\rangle =\left|-\frac{1}{2},n+1\right\rangle \kern1em \left|{\varphi}_b\right\rangle =\left|+\frac{1}{2},n\right\rangle $$
(16)

related to the two allowed conditions, ground −1/2 spin state plus n + 1 photons and exited +1/2 spin state plus n photons. The correspondent eigenvalues

$$ {E}_a=\left(n+1\right)\hslash \omega -\left(\hslash {\omega}_0/2\right) $$
(17)
$$ {E}_b= n\mathit{\hslash \omega }+\left(\mathit{\hslash}{\omega}_0/2\right) $$
(18)

are separated by the detuning frequency \( {\varDelta}_c={\scriptscriptstyle \frac{1}{\hslash }}\left({E}_a-{E}_b\right)=\omega -{\omega}_0 \). At resonance (Δ c  = 0), the unperturbed levels would be degenerate. The matrix elements of the interaction potential \( {\mathrm{\mathcal{H}}}_{\sigma_{+}} \) result

$$ \left\langle {\varphi}_a\left|{\mathrm{\mathcal{H}}}_{\sigma_{+}}\right|{\varphi}_a\right\rangle =\left\langle {\varphi}_b\left|{\mathrm{\mathcal{H}}}_{\sigma_{+}}\right|{\varphi}_b\right\rangle =0 $$
(19)
$$ \left\langle {\varphi}_b\left|{\mathrm{\mathcal{H}}}_{\sigma_{+}}\right|{\varphi}_a\right\rangle =\hslash {g}_c\sqrt{n+1}. $$
(20)

showing that for a system with n photons, the coupling strength scales nonlinearly as \( \sqrt{n+1} \). By defining the n-photon Rabi frequency as \( {\varOmega}_n=2{g}_c\sqrt{n+1} \), the eigenvalues of Eq. (15) read

$$ {E}_{+}(n)=\hslash \left(n+\frac{1}{2}\right)\omega +\frac{\hslash }{2}\sqrt{\varDelta_c^2+{\varOmega}_n^2} $$
(21)
$$ {E}_{-}(n)=\hslash \left(n+\frac{1}{2}\right)\omega -\frac{\hslash }{2}\sqrt{\varDelta_c^2+{\varOmega}_n^2}. $$
(22)

They form two branches of hyperbola with the unperturbed energies as asymptotes (see Fig. 9a). With respect to the unperturbed states, the interaction potential determines the formation of an anticrossing centered on resonance. The minimum gap between E 1 and E 2 is ℏΩ n for Δ c  = 0. The corresponding eigenstates, expressed as function of the unperturbed basis, result

$$ \left|{\chi}_{+}(n)\right\rangle = \sin \kern0.5em \theta \left|-\frac{1}{2},n+1\right\rangle + \cos \kern0.5em \theta \left|+\frac{1}{2},n\right\rangle $$
(23)
$$ \left|{\chi}_{-}(n)\right\rangle = \cos \theta \left|-\frac{1}{2},n+1\right\rangle + \sin \theta \left|+\frac{1}{2},n\right\rangle $$
(24)

with mixing angle

$$ \tan \left(2{\theta}_n\right)=-\frac{\varOmega_n}{\varDelta_c}\kern1em 0\le 2{\theta}_n<\pi . $$
(25)

Each added photon creates a two-dimensional subspace, the complete manifold is a ladder of the two-level states shifted in energy by ћω.

Let’s now focus on the resonant case. For Δ c  = 0 the mixing angle is θ n  = π/4 and the perturbed states result

$$ \left|{\chi}_{+}(n)\right\rangle =\frac{1}{\sqrt{2}}\left[\left|-\frac{1}{2},n+1\right\rangle +\left|+\frac{1}{2},n\right\rangle \right] $$
(26)
$$ \left|{\chi}_{-}(n)\right\rangle =\frac{1}{\sqrt{2}}\left[\left|-\frac{1}{2},n+1\right\rangle -\left|+\frac{1}{2},n\right\rangle \right]. $$
(27)

The time evolution can be calculated by applying the unitary evolution operator to the perturbed dressed states and by recasting in the | − 1/2〉 or | + 1/2〉 unperturbed basis. The time evolution of the ground |Ψ 〉 state is

$$ \left|{\varPsi}_{-}(t)\right\rangle = \cos \left(\frac{\varOmega_nt}{2}\right)\left|-\frac{1}{2},n+1\right\rangle -i \sin \left(\frac{\varOmega_nt}{2}\right)\left|+\frac{1}{2},n\right\rangle $$
(28)

while the excited state evolves as

$$ \left|{\varPsi}_{+}(t)\right\rangle = \cos \left(\frac{\varOmega_nt}{2}\right)\left|-\frac{1}{2},n+1\right\rangle +i \sin \left(\frac{\varOmega_nt}{2}\right)\left|+\frac{1}{2},n\right\rangle $$
(29)

These expressions describe the dynamics of entangled spin and photon states which have a time evolution that recalls the beat signal of two coupled degenerate quantum oscillators. The eigenmodes are a symmetric and antisymmetric combination of the independent modes of the free oscillators. The cavity and the spin coherently exchange a photon, which is absorbed and then emitted following the spin flip.

The population of the | − 1/2, n + 1〉 and | + 1/2, n〉 states oscillates and for n ≫ 1 the transition probability can be written as

$$ {P}_{ba}(t)=\frac{\varOmega_n^2}{\varDelta_c^2+{\varOmega}_n^2}{ \sin}^2\left[\sqrt{\varDelta_c^2+{\varOmega}_n^2}\frac{t}{2}\right]. $$
(30)

This formula reproduces the classical result of Eq. (6) with Ω n  = Ω R.

Appendix 2: Planar Resonators

2.1 Fabrication of Microstrip and Coplanar Resonators

Planar transmission lines are commonly used in microwave technology as they provide a simple way to transmit electromagnetic waves on a printed board circuit realized by standard lithographic methods. Among many different geometries, microstrip and coplanar waveguides are the most frequent choices. Microstrip lines are constituted by a dielectric substrate having a metal strip on the top and a ground plane on the bottom side. Coplanar waveguides differ from microstrips for the presence of two ground planes placed beside the central strip on the top side. The ground conductor in the backside can also be removed. With these geometries, it is possible to match the impedance of the feeding coaxial lines (usually 50 Ω) with relative physical dimensions that spans from millimeter to micron size. By design, the transmission of quasi-transverse electromagnetic modes (TEM) can be achieved, while higher-order non-TEM modes can be appropriately suppressed [119].

Coplanar waveguides are the best choice for minimizing the irradiation of the microwave field outside the surface and to arrange ground electrodes close to the central signal line. A coplanar resonator of length l is realized when the central strip is interrupted in correspondence to two selected positions. These dielectric gaps are capacitors that electrically couple resonator and transmission line, acting like mirrors do in an optical cavity. Resonant conditions are met when input and reflected wave signals give constructive interference into the cavity. The value of the resonant frequency ω c is determined by the length l of the resonator and by the speed of propagation of the electromagnetic wave in the coplanar waveguide. The latter is related to the effective dielectric constant ε eff of the insulator. For a cavity resonating at half wavelength λ/2 [120], the resonance frequency is:

$$ {\omega}_c=\frac{2\pi c}{\sqrt{\varepsilon_{\mathrm{eff}}}}\frac{1}{2l} $$
(31)

As mentioned in the previous sections, the quality factor of the resonator must be maximized to reduce the decay rate of the cavity κ and to increase the photon lifetime. The Q-factor is defined as the ratio between the energy stored in the cavity and the power dissipated in a time interval 1/ω or, alternatively as the width of the resonance Δω c since Q = ω c /Δω c . For a resonator coupled to the feedlines, the loaded quality factor must be considered

$$ \frac{1}{Q}=\frac{1}{Q_{\mathrm{ext}}}+\frac{1}{Q_{\mathrm{int}}}, $$
(32)

which is calculated by including the external quality factor (Q ext) related to the coupling capacitances and the intrinsic Q int, due to the internal losses of the resonators.

The capacitance of the input and output gaps controls the coupling with the transmission line and consequently the power flow κ in and κ out along the waveguide. The maximum transfer of microwave energy is obtained when the impedance of the resonator is matched to the feedline. This corresponds to the condition Q ext = Q int and the resonator is said to be critically coupled. For Q ext < Q int the resonator is undercoupled. This configuration corresponds to reduced transmission, thus lower signal-to-noise ratio, but maximum Q. In the experiments it is often reported because the low output signals can be restored by a low noise microwave amplifier inserted along the output line. Conversely, in the overcoupling regime (Q ext > Q int) high κ in and κ out are obtained, thus lower Q. This configuration has been used to get fast measurement rates of the cavity photon states [81].

Intrinsic losses often determine the loaded quality factor of the resonator. They are related to different dissipation mechanisms that finally determine the performances of the coplanar resonator. Losses depend on the geometry, material choice, temperature, frequency range, and applied magnetic field. Resonators are rather susceptible to their environment, so they are usually enclosed in metal boxes. Without applied magnetic field, three are the main dissipation mechanisms: resistive, dielectric, and radiative losses [121].

Resistive losses are due to energy dissipated by an electromagnetic wave traveling along a waveguide with finite conductance. Just considering resistive losses, the Q factor passes from ~101 to 102, typically obtained for resistive cavities, up to Q ~ 107 for superconducting resonators [122]. Niobium is commonly employed for its relatively high critical temperature (T c  ≃ 9.2 K) and critical field. Superconducting films of TiN, Al, Ta, Re, or YBCO are also reported. Spin systems usually require the application of static magnetic fields to split the degeneracy of the energy levels. For instance, X-band resonance of a spin 1/2 paramagnet requires about 340 mT. Trapping of magnetic flux can be minimized by aligning the field parallel to the resonator surface and experiments report limited degradation of Q up to 350 mT [123]. For higher field or other orientations the penetration of magnetic flux determines a decrease of the quality factor down to 103 or lower values. Strategies for the reduction of the magnetic losses have been applied, for instance, by pinning the vortex motion by patterning of slots or microdots [124126]. Magnetic hysteresis effects are also present and determine the dependence of the Q-factor on the magnetic history of the sample [127].

Dielectric losses are due to absorption of the electromagnetic power by the dielectric substrate. For a lossy material the complex dielectric constant ε = ε r  +  i has a finite imaginary part ε i and loss tangent (tan δ). The quality factor associated with the dielectric losses is Q diel = 1/tan δ, thus it is desirable to choose insulating substrates with low loss tangent. Sapphire has very low losses with tan δ ~ 10− 8 in high-purity crystals [128]. High resistivity silicon and thermally grown SiO2 provide a valid alternative [129]. Fabrication strategies, like suspended resonators with grooves etched in the regions of high electric field, have been proposed for reducing the dielectric losses [130].

Radiative losses are an additional contribution due to the emission of electromagnetic radiation in the free space. The associated quality factor is Q rad ~ (l/b)2, where l and b are, respectively, the length and the distance between the ground electrodes in the top plane [131]. For a typical coplanar waveguide resonator Q rad ~ 106.

The temperature dependence of the Q-factor shows a sudden increase below T c reaching a maximum value for T ≃ T c /10 (T ≃ 1 K for Nb). At lower temperature, Q progressively decreases due to a further loss mechanism inducted by the two-level (spin) transitions. These losses, which dominate in the millikelvin range, are ubiquitously reported in lithographed resonators and they are independent by the materials used. They have been assigned to oxides or impurities located close to the active region of the resonator [132135]

The fundamental resonance frequency of planar resonators is usually located in the 2–15 GHz range by appropriate choice of l. Higher-order harmonics provides further resonances, although the quality factor progressively deteriorates by increasing the mode number [136]. Tunable superconducting resonators have been realized by means of Josephson junctions demonstrating large tunable range and high quality factor [137139], and the possibility to tune ω c faster than photon lifetime [140].

2.2 Planar Resonators for Magnetic Resonance Experiments

Modern conventional three-dimensional EPR spectrometers report a spin sensitivity up to ~109 spins Hz−1/2 thanks to the high quality factor of cavity. The minimum detectable number of spins of an EPR cavity depends also on a set of different parameters, such as cavity volume and strength of the microwave field [118]. For small samples, such as thin films or nanostructures, an efficient way to improve the sensitivity of the EPR measurement is to increase the filling factor

$$ \eta =\frac{\int_{V_s}{\left|{B}_1\right|}^2dV}{\int_{V_c}{\left|{B}_1\right|}^2dV} $$
(33)

being V c and V s respectively, the e.m. mode and sample volume [141], by fabricating resonators that match the sample size and that can concentrate the microwave field in the sample space.

Planar resonating circuits show microwave fields confined in a small V c , limited to about 100 μm above the surface, where the intensity of B 1 can reach the 0.1 mT range with a limited input power (~100 μW). These devices have been proposed as EPR cavities [142, 143], also because they are suitable for low temperature experiments where microwave heating must be avoided. With the purpose to maximize the power to field conversation efficiency on the sample volume, several designs have been studied, including microstrips [144], planar microcoils [145, 146], and surface loop-gap microresonators [147]. These devices, investigated by means of both continuous-wave and pulsed EPR experiments, report an increase of the sensitivity up to ~106 spins Hz−1/2 [147]. Similar resonators were also used for ferromagnetic resonance measurements [148150]. In addition, cross-shaped resonators were proposed for controlling the polarization of the microwave mode [151].

Continuous-wave EPR of different spin ensembles has been exploited for strong-coupling experiments with coplanar waveguide resonators [9497, 152]. Superconducting resonators have also been studied for pulsed EPR [123, 153] or non-resonating frequency-sweeping EPR [108]. Optimized resonators made with parallel arrays of superconducting microstrip have been also developed for improving the homogeneity of B 1 over a large region [123].

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ghirri, A., Troiani, F., Affronte, M. (2014). Quantum Computation with Molecular Nanomagnets: Achievements, Challenges, and New Trends. In: Gao, S. (eds) Molecular Nanomagnets and Related Phenomena. Structure and Bonding, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_145

Download citation

Publish with us

Policies and ethics