Skip to main content

Crystallization and Dissolution in Aqueous Solution: A Bond-Valence Approach

  • Chapter
  • First Online:
Bond Valences

Part of the book series: Structure and Bonding ((STRUCTURE,volume 158))

Abstract

In many groups of minerals, structural diversity occurs by polymerization of a small number of clusters (or fundamental building blocks). Where these minerals crystallize from aqueous or hydrothermal solutions, the fundamental building blocks occur as aqueous species in solution, and it seems reasonable to conclude that crystallization of these minerals occurs by condensation of these clusters in solution. The variation in Lewis acidity of these clusters is a function of the pH of the aqueous solution in which they occur, in accord with the different structures crystallizing from similar aqueous solutions at different pH. Strongly bonded polyhedron chains (equivalent to periodic bond-chains) control the morphology of crystals. Anions at the surface of a mineral (i.e., exposed to an ambient aqueous solution) are called terminations, and the residual valence at a termination controls its reactivity (i.e., is the driving force for reaction with the aqueous solution). The residual valence of a polyhedron chain controls the growth or dissolution rate at the crystal face associated with that chain and may be calculated as the net residual valence of the terminations per repeat of the polyhedron chain. Edges involving polyhedron chains with low normalized residual valence will grow slowly, whereas edges involving polyhedron chains with high normalized residual valence will grow rapidly, and the relative morphology of crystals will be controlled by the relative magnitudes of the residual valence of polyhedron chains parallel to specific faces. The observed morphology of selected uranyl-oxide hydroxyl-hydrate and borate minerals is in reasonable accord with this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

v.u:

Valence units

References

  1. Brown ID (2002) The chemical bond in inorganic chemistry: the bond-valence model. Oxford University Press, Oxford

    Google Scholar 

  2. Schindler M, Hawthorne FC (2001) A bond-valence approach to the structure, chemistry and paragenesis of hydroxy-hydrated oxysalt minerals: II. crystal structure and chemical composition of borate minerals. Can Mineral 5:1243–1256

    Article  Google Scholar 

  3. Hawthorne FC, Schindler M (2008) Understanding the weakly bonded constituents in oxysalt minerals. Z Kristallogr 223:41–68

    CAS  Google Scholar 

  4. Hawthorne FC (2012) A bond-topological approach to theoretical mineralogy: crystal structure, chemical composition and chemical reactions. Phys Chem Mineral 39:841–874

    Article  CAS  Google Scholar 

  5. Hawthorne FC (1979) The crystal structure of morinite. Can Mineral 17:93–102

    CAS  Google Scholar 

  6. Hawthorne FC (1983) Graphical enumeration of polyhedral clusters. Acta Crystallogr A39:724–736

    Article  CAS  Google Scholar 

  7. Hawthorne FC (1985) Towards a structural classification of minerals: the viMivT2On minerals. Am Mineral 70:455–473

    CAS  Google Scholar 

  8. Ingri N (1963) Equilibrium studies of polyanions containing BIII, SiIV, GeIV and VV. Svensk Kem Tidskr 75:3–34

    Google Scholar 

  9. Janda R, Heller G (1979) Ramanspektroskopische. Untersuchungen an festen und in Wasser gelösten Polyboraten. Z Naturforsch 34b:585–590

    CAS  Google Scholar 

  10. Salentine CG (1983) High-field boron-11 NMR of alkali borates. Aqueous polyborate equilibria. Inorg Chem 22:3920–3924

    Article  CAS  Google Scholar 

  11. Müller D, Grimmer AR, Timper U, Heller G, Shakibaie-Moghadam M (1993) 11B-MAS-NMR untersuchungen zur anionenstruktur von boraten. Z Anorg Allg Chem 619:1262–1268

    Article  Google Scholar 

  12. Maya L (1976) Identification of polyborate and fluoropolyborate ions in solution by Raman spectroscopy. Inorg Chem 15:2179–2184

    Article  CAS  Google Scholar 

  13. Janda R, Heller G (1979) B–NMR-spektroskopische. Untersuchungen an wäßrigen Polyboratlösungen. Z Naturforsch 34b:1078–1083

    CAS  Google Scholar 

  14. Christ CL, Truesdell AH, Erd RC (1967) Borate mineral assemblages in the system Na2O–CaO–MgO–B2O3–H2O. Geochim Cosmochim Acta 31:313–337

    Article  CAS  Google Scholar 

  15. Schindler M, Hawthorne FC (2001) A bond-valence approach to the structure, chemistry and paragenesis of hydroxy-hydrated oxysalt minerals: III. paragenesis of borate minerals. Can Mineral 5:1257–1274

    Article  Google Scholar 

  16. Grenthe I, Fuger J, Konings RJM, Lemire RJ, Muller AB, Nguyen-Trung C, Wanner H (2004) Chemical thermodynamics of Uranium. Nuclear Energy Agency, OECD Nuclear Energy Agency, Data Bank Issy-les-Moulineaux, France

    Google Scholar 

  17. Tsushima S, Rossberg A, Ikeda A, Müller K, Scheinost AC (2007) Stoichiometry and structure of uranyl(VI) hydroxo dimer and trimer complexes in aqueous solution. Inorg Chem 46:10819–10826

    Article  CAS  Google Scholar 

  18. Hawthorne FC, Burns PC, Grice JD (1996) The crystal chemistry of boron. Rev Mineral 33:41–115

    CAS  Google Scholar 

  19. Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42:547–569

    Article  CAS  Google Scholar 

  20. Schindler M, Putnis A (2004) Crystal growth of schoepite on the (104) surface of calcite. Can Mineral 42:1667–1681

    Article  CAS  Google Scholar 

  21. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals I. Acta Crystallogr 8:49–52

    Article  CAS  Google Scholar 

  22. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals II. Acta Crystallogr 8:521–524

    Article  CAS  Google Scholar 

  23. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals II. Acta Crystallogr 8:525–529

    Article  CAS  Google Scholar 

  24. Hawthorne FC, Krivovichev SV, Burns PC (2000) The crystal chemistry of sulfate minerals. Rev Mineral Geochem 40:1–112

    Article  CAS  Google Scholar 

  25. Burns PC (1999) The crystal chemistry of uranium. Rev Mineral 38:23–90

    CAS  Google Scholar 

  26. Krivovichev SV, Filatov SK (1999) Structural principles for minerals and inorganic compounds containing anion-centrered tetrahedra. Am Mineral 84:1099–1106

    CAS  Google Scholar 

  27. Hiemstra T, Venema O, Van Riemsdijk WH (1996) Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: the bond valence principle. J Colloid Interface Sci 184:680–692

    Article  CAS  Google Scholar 

  28. Bickmore BR, Rosso KM, Nagy KL, Cygan RT, Tadanier CJ (2003) Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: implications for acid–base reactivity. Clays Clay Mineral 51:359–371

    Article  CAS  Google Scholar 

  29. Bickmore BR, Tadanier CJ, Rosso KM, Monn WD, Eggett DL (2004) Bond-valence methods for pKa prediction: critical reanalysis and a new approach. Geochim Cosmochim Acta 68:2025–2042

    Article  CAS  Google Scholar 

  30. Schindler M, Hawthorne FC (2001) A bond-valence approach to the structure, chemistry and paragenesis of hydroxy-hydrated oxysalt minerals: I. theory. Can Mineral 5:1225–1242

    Article  Google Scholar 

  31. Schindler M, Mutter A, Hawthorne FC, Putnis A (2004) Prediction of crystal morphology of complex uranyl-sheet minerals. I. Theory. Can Mineral 42:1629–1649

    Article  CAS  Google Scholar 

  32. Faure G (1998) Principles and applications of geochemistry: a comprehensive textbook for geology students. Prentice Hall, Upper Saddle River

    Google Scholar 

  33. Stumm W (1992) Chemistry of the solid-water interface. Wiley, New York

    Google Scholar 

  34. Schindler M, Hawthorne FC (2004) A bond-valence approach to the uranyl-oxide hydroxy-hydrate minerals: chemical composition and occurrence. Can Mineral 42:1601–1627

    Article  CAS  Google Scholar 

  35. Schindler M, Mutter A, Hawthorne FC, Putnis A (2004) Prediction of crystal morphology of complex uranyl-sheet minerals. II. Observation. Can Mineral 42:1651–1666

    Article  CAS  Google Scholar 

  36. Finch RJ, Cooper MA, Hawthorne FC, Ewing RC (1996) The crystal structure of schoepite, [(UO2)8O2(OH)12](H2O)12. Can Mineral 34:1071–1088

    CAS  Google Scholar 

  37. Finch RJ, Hawthorne FC, Ewing RC (1998) Structural relations among schoepite, metaschoepite and “dehydrated schoepite”. Can Mineral 36:831–845

    CAS  Google Scholar 

  38. Piret P (1985) Structure cristalline de la fourmariérite, Pb(UO2)4O3(OH)4⋅4H2O. Bull Minéral 108:659–665

    CAS  Google Scholar 

  39. Rufe E, Hochella M Jr (1999) Quantitative assesment of reactive surface area of phlogopite dissolution during acid dissolution. Sci 285:874–876

    Article  CAS  Google Scholar 

  40. Burns PC, Ewing RC, Hawthorne FC (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters and polymerization of polyhedra. Can Mineral 35:1551–1570

    CAS  Google Scholar 

  41. Hawthorne FC (1992) The role of OH and H2O in oxide and oxysalt minerals. Z Kristallogr 201:183–206

    Article  CAS  Google Scholar 

  42. Hawthorne FC (1994) Structural aspects of oxides and oxysalt crystals. Acta Crystallogr B50:481–510

    Article  CAS  Google Scholar 

  43. Burns PC, Grice JD, Hawthorne FC (1995) Borate minerals. I. Polyhedral clusters and fundamental building blocks. Can Mineral 33:1131–1151

    CAS  Google Scholar 

  44. Grice JD, Burns PC, Hawthorne FC (1999) Borate minerals II. A hierarchy of structures based on the borate fundamental building block. Can Mineral 37:731–762

    CAS  Google Scholar 

  45. Konnert JA, Clark JR, Christ CL (1970) Crystal structure of fabianite, CaB3O5(OH), and a comparison with the structure of its synthetic dimorph. Z Kristallogr 132:241–252

    Article  CAS  Google Scholar 

  46. Moll H, Reich T, Szabó Z (2000) The hydrolysis of dioxouranium (VI) investigated using EXAFS and 17O-NMR. Radiochim Acta 88:411–415

    CAS  Google Scholar 

  47. http://www.trinityminerals.com/sm/uranium.shtml

  48. Karanovic L, Rosic A, Poleti D (2004) Crystal structure of nobleite, Ca[B6O9(OH)2]*3H2O, from Jarandol (Serbia). Eur J Mineral 16:825–833

    Article  CAS  Google Scholar 

  49. Burns PC, Hawthorne FC (1994) Hydrogen bonding in tunellite. Can Mineral 32:895–902

    CAS  Google Scholar 

  50. Gerhold G, Kampf AR, Bruland K, Ettensohn D, Behnke D (2006) The photo-atlas of minerals for Windows. Los Angeles county museum of natural history, Gem Mineral Council, Los Angeles

    Google Scholar 

Download references

Acknowledgments

FCH was supported by a Canada Research Chair in Crystallography and Mineralogy, and FCH and MS were supported by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank C. Hawthorne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hawthorne, F.C., Schindler, M. (2013). Crystallization and Dissolution in Aqueous Solution: A Bond-Valence Approach. In: Brown, I., Poeppelmeier, K. (eds) Bond Valences. Structure and Bonding, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2013_91

Download citation

Publish with us

Policies and ethics