Skip to main content

Metal-Induced Energy Transfer

  • Chapter
  • First Online:
Advanced Photon Counting

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 15))

Abstract

This chapter presents an overview of the recently introduced concept of metal-induced energy transfer and two of its applications. We discuss the basic principle of the method and its application to the mapping of the membrane of a living cell and to the single-molecule axial localization with 2–3 nm accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Purcell EM (1946) Proceedings of the american physical society. Phys Rev 69(11–12):674

    Google Scholar 

  2. Förster TH (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 437:55–75

    Google Scholar 

  3. Drexhage KH (1974) Interaction of light with monomolecular dye layers, chap IV. In: Wolf E (ed) Progress in optics. Elsevier, Amsterdam, pp 163–232

    Google Scholar 

  4. Lukosz W, Kunz RE (1977) Light emission by magnetic and electric dipoles close to a plane interface. I Total radiated power. J Opt Soc Am 67(12):1607–1615

    Article  Google Scholar 

  5. Chance RR, Prock A, Silbey R (2007) Molecular fluorescence and energy transfer near interfaces. In: Prigogine I, Rice SA (eds) Advances in chemical physics. Wiley, New York, pp 1–65

    Google Scholar 

  6. Chizhik AI et al (2014) Metal-induced energy transfer for live cell nanoscopy. Nat Photonics 8(2):124–127

    Article  CAS  Google Scholar 

  7. Karedla N et al (2014) Single-molecule metal-induced energy transfer (smMIET): resolving nanometer distances at the single-molecule level. ChemPhysChem 15(4):705–711

    Article  CAS  Google Scholar 

  8. Colyer RA, Lee C, Gratton E (2008) A novel fluorescence lifetime imaging system that optimizes photon efficiency. Microsc Res Tech 71(3):201–213

    Article  Google Scholar 

  9. Chizhik AI et al (2011) Probing the radiative transition of single molecules with a tunable microresonator. Nano Lett 11(4):1700–1703

    Article  CAS  Google Scholar 

  10. Chizhik AI, Gregor I, Enderlein J (2013) Quantum yield measurement in a multicolor chromophore solution using a nanocavity. Nano Lett 13(3):1348–1351

    Article  CAS  Google Scholar 

  11. Chizhik AI et al (2012) Electrodynamic coupling of electric dipole emitters to a fluctuating mode density within a nanocavity. Phys Rev Lett 108(16):163002

    Article  Google Scholar 

  12. Enderlein J (1999) Single-molecule fluorescence near a metal layer. Chem Phys 247(1):1–9

    Article  CAS  Google Scholar 

  13. Enderlein J, Ruckstuhl T, Seeger S (1999) Highly efficient optical detection of surface-generated fluorescence. Appl Opt 38(4):724–732

    Article  CAS  Google Scholar 

  14. Enderlein J, Ruckstuhl T (2005) The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection. Opt Express 13(22):8855–8865

    Article  CAS  Google Scholar 

  15. Enderlein J (2000) A theoretical investigation of single-molecule fluorescence detection on thin metallic layers. Biophys J 78(4):2151–2158

    Article  CAS  Google Scholar 

  16. Braun D, Fromherz P (1998) Fluorescence interferometry of neuronal cell adhesion on microstructured silicon. Phys Rev Lett 81(23):5241–5244

    Article  CAS  Google Scholar 

  17. Patra D, Gregor I, Enderlein J (2004) Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies. J Phys Chem A 108(33):6836–6841

    Article  CAS  Google Scholar 

  18. Heitmann V, Reiß B, Wegener J (2007) The quartz crystal microbalance in cell biology: basics and applications. In: Steinem C, Janshoff A (eds) Piezoelectric sensors. Springer, Berlin, pp 303–338

    Chapter  Google Scholar 

  19. Vogelsang J et al (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed 47(29):5465–5469

    Article  CAS  Google Scholar 

  20. Böhmer M, Enderlein J (2003) Orientation imaging of single molecules by wide-field epifluorescence microscopy. J Opt Soc Am B 20(3):554–559

    Article  Google Scholar 

  21. Chizhik AI et al (2011) Excitation isotropy of single CdSe/ZnS nanocrystals. Nano Lett 11(3):1131–1135

    Article  CAS  Google Scholar 

  22. Hohlbein J, Hübner CG (2008) Three-dimensional orientation determination of the emission dipoles of single molecules: the shot-noise limit. J Chem Phys 129(9):094703

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jörg Enderlein or Alexey I. Chizhik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karedla, N., Ruhlandt, D., Chizhik, A.M., Enderlein, J., Chizhik, A.I. (2014). Metal-Induced Energy Transfer. In: Kapusta, P., Wahl, M., Erdmann, R. (eds) Advanced Photon Counting. Springer Series on Fluorescence, vol 15. Springer, Cham. https://doi.org/10.1007/4243_2014_77

Download citation

Publish with us

Policies and ethics