Skip to main content

MFD-PIE and PIE-FI: Ways to Extract More Information with TCSPC

  • Chapter
  • First Online:
Advanced Photon Counting

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 15))

Abstract

Pulsed interleaved excitation (PIE) is the method of fast alternation of pulsed lasers for quasi-simultaneous observation of fluorophores with different spectral properties. PIE was originally introduced to enable artifact-free fluorescence cross-correlation measurements, while first experiments with alternating laser excitation (ALEX) used the dual excitation of donor and acceptor for single-pair Förster resonance energy transfer (spFRET). In this article, we will review the benefit of PIE for spFRET experiments with multiparameter fluorescence detection (MFD). The direct probing of the acceptor fluorophore in PIE increases the robustness of the quantitative MFD analysis and extends it to even more parameters.

Recently, PIE has been combined with commonly used fluorescence fluctuation imaging techniques such as raster image correlation spectroscopy (RICS) and the number and brightness analysis (N&B). We highlight how PIE improves these methods, and how artifacts in the analysis can be avoided. Similar to PIE-FCS, quantitative cross-correlation raster image correlation spectroscopy (ccRICS) is greatly simplified. Additionally, the lifetime information can be used to further increase the contrast and sensitivity of the method with raster lifetime image correlation spectroscopy (RLICS).

*These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kapanidis AN, Lee NK, Laurence TA et al (2004) Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci U S A 101:8936–8941

    Article  CAS  Google Scholar 

  2. Kapanidis AN, Laurence TA, Lee NK et al (2005) Alternating-laser excitation of single molecules. Acc Chem Res 38:523–533

    Article  CAS  Google Scholar 

  3. Laurence TA, Kong X, Jäger M, Weiss S (2005) Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. Proc Natl Acad Sci U S A 102:17348–17353

    Article  CAS  Google Scholar 

  4. Müller BK, Zaychikov E, Bräuchle C, Lamb DC (2005) Pulsed interleaved excitation. Biophys J 89:3508–3522

    Article  Google Scholar 

  5. Lamb DC, Müller BK, Bräuchle C (2005) Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting. Curr Pharm Biotechnol 6:405–414

    Article  CAS  Google Scholar 

  6. Hendrix J, Lamb DC (2013) Implementation and application of pulsed interleaved excitation for dual-color FCS and RICS. In: Engelborghs Y, Visser AJWG (eds) Fluorescence spectroscopy and microscopy. Humana, Totowa, pp 653–682

    Google Scholar 

  7. Olofsson L, Margeat E (2013) Pulsed interleaved excitation fluorescence spectroscopy with a supercontinuum source. Opt Express 21:3370–3378

    Article  CAS  Google Scholar 

  8. Eggeling C, Berger S, Brand L, Fries JR (2001) Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J Biotechnol 86(3):163–180

    Article  CAS  Google Scholar 

  9. Kudryavtsev V, Sikor M, Kalinin S et al (2012) Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements. ChemPhysChem 13:1060–1078

    Article  CAS  Google Scholar 

  10. Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 437:55–75

    Article  Google Scholar 

  11. Nir E, Michalet X, Hamadani KM et al (2006) Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. J Phys Chem B 110:22103–22124

    Article  CAS  Google Scholar 

  12. Lee NK, Kapanidis AN, Wang Y et al (2005) Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys J 88:2939–2953

    Article  CAS  Google Scholar 

  13. Koshioka M, Sasaki K, Masuhara H (1995) Time-dependent fluorescence depolarization analysis in three-dimensional microspectroscopy. Appl Spectrosc 1–5

    Google Scholar 

  14. Maus M, Cotlet M, Hofkens J et al (2001) An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules. Anal Chem 73:2078–2086

    Article  CAS  Google Scholar 

  15. Kalinin S, Valeri A, Antonik M et al (2010) Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. J Phys Chem B 114:7983–7995

    Article  CAS  Google Scholar 

  16. Antonik M, Felekyan S, Gaiduk A, Seidel CAM (2006) Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. J Phys Chem B 110:6970–6978

    Article  CAS  Google Scholar 

  17. Böhmer M, Wahl M, Rahn HJ et al (2002) Time-resolved fluorescence correlation spectroscopy. Chem Phys Lett 353:439–445

    Article  Google Scholar 

  18. Felekyan S, Kalinin S, Sanabria H et al (2012) Filtered FCS: species auto- and cross-correlation functions highlight binding and dynamics in biomolecules. ChemPhysChem 13:1036–1053

    Article  CAS  Google Scholar 

  19. Goldner LS, Jofre AM, Tang J (2010) Droplet confinement and fluorescence measurement of single molecules. Methods Enzymol 472:61–88

    CAS  Google Scholar 

  20. Milas P, Rahmanseresht S, Ben D Gamari, Goldner LS (2013) Single molecule sensitive fret in Attoliter droplets. arXiv: 1312.0854 [physic.bio-ph]

    Google Scholar 

  21. Zarrabi N, Ernst S, Dueser MG et al (2009) Simultaneous monitoring of the two coupled motors of a single FoF1-ATP synthase by three-color FRET using duty cycle-optimized triple-ALEX. arXiv: 0902.1292 [q-bio.BM]

    Google Scholar 

  22. Lee NK, Kapanidis AN, Koh HR et al (2007) Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. Biophys J 92:303–312

    Article  CAS  Google Scholar 

  23. Lee J, Lee S, Ragunathan K et al (2010) Single-molecule four-color FRET. Angew Chem Int Ed Engl 49:9922–9925

    Article  CAS  Google Scholar 

  24. Stein IH, Steinhauer C, Tinnefeld P (2011) Single-molecule four-color fret visualizes energy-transfer paths on DNA origami. J Am Chem Soc 133:4193–4195

    Article  CAS  Google Scholar 

  25. Milles S, Koehler C, Gambin Y et al (2012) Intramolecular three-colour single pair FRET of intrinsically disordered proteins with increased dynamic range. Mol Biosyst 8:2531

    Article  CAS  Google Scholar 

  26. Elson EL, Magde D (1974) Fluorescence correlation spectroscopy I. Conceptual basis and theory. Biopolymers 13:1–27

    Article  CAS  Google Scholar 

  27. Rigler R, Mets Ü, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169–175

    CAS  Google Scholar 

  28. Hebert B, Costantino S, Wiseman PW (2005) Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys J 88:3601–3614

    Article  CAS  Google Scholar 

  29. Digman MA, Brown CM, Sengupta P et al (2005) Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89:1317–1327

    Article  CAS  Google Scholar 

  30. Digman MA, Dalal R, Horwitz AF, Gratton E (2008) Mapping the number of molecules and brightness in the laser scanning microscope. Biophys J 94:2320–2332

    Article  CAS  Google Scholar 

  31. Hendrix J, Schrimpf W, Höller M, Lamb DC (2013) Pulsed interleaved excitation fluctuation imaging. Biophys J 105:848–861

    Article  CAS  Google Scholar 

  32. Petersen NO, Höddelius PL, Wiseman PW, Seger O (1993) Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys J 65:1135–1146

    Article  CAS  Google Scholar 

  33. Digman MA, Wiseman PW, Horwitz AR, Gratton E (2009) Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method. Biophys J 96:707–716

    Article  CAS  Google Scholar 

  34. Thompson NL (1999) Fluorescence correlation spectroscopy. Topics in fluorescence spectroscopy 1:337–378

    Google Scholar 

  35. Ivanchenko S, Lamb DC (2011) Fluorescence correlation spectroscopy: principles and developments. Supramolecular Struct Funct 10:1–30

    Google Scholar 

  36. Hendrix J, Lamb DC (2013) Pulsed interleaved excitation: principles and applications. Methods Enzymol 518:205–243

    CAS  Google Scholar 

  37. Schwille P, Kummer S, Heikal AA et al (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci U S A 97:151–156

    Article  CAS  Google Scholar 

  38. Hendrix J, Flors C, Dedecker P et al (2008) Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J 94:4103–4113

    Article  CAS  Google Scholar 

  39. Digman MA, Gratton E (2009) Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. WIREs Syst Biol Med 1:273–282

    Article  CAS  Google Scholar 

  40. Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single‐molecule sensitivity on cell and model membranes. Cytometry 36:176–182

    Article  CAS  Google Scholar 

  41. Hillesheim LN, Müller JD (2003) The photon counting histogram in fluorescence fluctuation spectroscopy with non-ideal photodetectors. Biophys J 85:1948–1958

    Article  CAS  Google Scholar 

  42. Becker W (2005) Advanced time-correlated single photon counting techniques. Springer, Heidelberg

    Book  Google Scholar 

  43. Wahl M, Röhlicke T, Rahn H-J et al (2013) Integrated multichannel photon timing instrument with very short dead time and high throughput. Rev Sci Instrum 84:043102

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jelle Hendrix for the data on PIE-FI and Carolina Sanchéz Rico, Dr. Lisa Warner, and Prof. Dr. Michael Sattler for providing the U2AF65 protein. We gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft through the Excellence Cluster Nanosystems Initiative Munich (NIM) and the Collaborate Research Center (SFB1035) and the Ludwig-Maximilians-University Munich (LMUinnovativ BioImaging Network).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don C. Lamb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barth, A., von Voithenberg, L.V., Lamb, D.C. (2014). MFD-PIE and PIE-FI: Ways to Extract More Information with TCSPC. In: Kapusta, P., Wahl, M., Erdmann, R. (eds) Advanced Photon Counting. Springer Series on Fluorescence, vol 15. Springer, Cham. https://doi.org/10.1007/4243_2014_66

Download citation

Publish with us

Policies and ethics