Skip to main content

Fluorescence Correlation Spectroscopy to Study Membrane Organization and Interactions

  • Chapter
  • First Online:
Fluorescent Methods to Study Biological Membranes

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 13))

  • 1813 Accesses

Abstract

This chapter describes the application of fluorescence correlation spectroscopy (FCS) as a powerful technique for the study of membrane organization and interactions. Monitoring the fluorescence signal fluctuations allows resolving concentrations, diffusion coefficients, and binding of several membrane components in experiments in vitro as well as in vivo.

We discuss the basic principles of FCS and explain novel implementations of FCS introduced to overcome the technical difficulties present in the standard version of fluorescence correlation spectroscopy. Finally, we report several examples of studies with the application of FCS on both model and biological membranes to obtain interesting insight in the topic of lateral membrane organization and membrane interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magde D, Elson EL, Webb WW (1972) Thermodynamic fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    CAS  Google Scholar 

  2. Ehrenberg M, Rigler R (1974) Rotational Brownian motion and fluorescence intensity fluctuations. Chem Phys 4:390–401

    CAS  Google Scholar 

  3. Elson EL, Magde D, Elson EL, Magde D (1974) Fluorescence correlation spectroscopy I. Conceptual basis and theory. Biopolymers 13:1–27

    CAS  Google Scholar 

  4. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy II. An experimental realization. Biopolymers 13:29–61

    CAS  Google Scholar 

  5. Thompson NL (1991) In: Lakowicz JR (ed) Topics in fluorescence spectroscopy techniques, vol 1. Plenum, New York, pp 337–378

    Google Scholar 

  6. Rigler R, Mets U, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22(3):159

    Google Scholar 

  7. Eigen M, Rigler M (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci USA 91:5740–5747

    CAS  Google Scholar 

  8. Rigler M (1995) Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology. J Biotechnol 41:177–186

    CAS  Google Scholar 

  9. Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65:251–297

    CAS  Google Scholar 

  10. Rigler R, Pramanik A, Jonasson P, Kratz G, Jansson OT, Nygren PA, Stahl S, Ekberg K, Johansson BL, Uhlen S, Uhlen M, Jornvall H, Wahren J (1999) Proc Natl Acad Sci USA 96:13318

    CAS  Google Scholar 

  11. Ries J, Schwille P (2008) New concepts for fluorescence correlation spectroscopy on membranes. Phys Chem Chem Phys 10(24):3487–3497

    CAS  Google Scholar 

  12. Enderlein J, Gregor I, Patra D, Dertinger T, Kaupp UB (2005) Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. Chemphyschem 6:2324–2336

    CAS  Google Scholar 

  13. Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91:1915–1924

    CAS  Google Scholar 

  14. Ries J, Chiantia S, Schwille P (2009) Accurate determination of membrane dynamics with line scan FCS. Biophys J 96:1999–2008

    CAS  Google Scholar 

  15. Hebert B, Costantino S, Wiseman PW (2005) Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys J 88:3601–3614

    CAS  Google Scholar 

  16. Ayuyan AG, Cohen FS (2006) Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation. Biophys J 91:2172–2183

    CAS  Google Scholar 

  17. Thompson NL, Steele BL (2007) Total internal reflection with fluorescence correlation spectroscopy. Nat Protoc 2:878–890

    CAS  Google Scholar 

  18. Ries J, Ruckstuhl T, Verdes D, Schwille P (2008) Supercritical angle fluorescence correlation spectroscopy. Biophys J 94:221–229

    CAS  Google Scholar 

  19. Medina MA, Schwille P (2002) Fluorescence correlation spectroscopy for the detection and study of single molecules in biology. Bioessays 24:758–764

    CAS  Google Scholar 

  20. Mayboroda OA, van Remoortere A, Tanke HJ, Hokke CH, Deelder AM (2003) A new approach for fluorescence correlation spectroscopy (FCS) based immunoassays. J Biotechnol 107:185–192

    Google Scholar 

  21. Hess ST, Webb WW (2002) Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83:2300–2317

    CAS  Google Scholar 

  22. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378

    CAS  Google Scholar 

  23. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157:1071–1081

    CAS  Google Scholar 

  24. Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36:176–182

    CAS  Google Scholar 

  25. Bouchaud JP, Georges A (1990) Anomalous diffusion in disordered media – statistical mechanisms, models and physical applications. Phys Rep Rev Sect Phys Lett 195:127–293

    Google Scholar 

  26. Saxton MJ (1994) Anomalous diffusion due to obstacles – a Monte-Carlo study. Biophys J 66:394–401

    CAS  Google Scholar 

  27. Schutz GJ, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73:1073–1080

    CAS  Google Scholar 

  28. Kusumi A, Ike H, Nakada C, Murase K, Fujiwara T (2005) Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin Immunol 17:3–21

    CAS  Google Scholar 

  29. BrustMascher I, Feder TJ, Slattery JP, Baird B, Webb WW (1993) FPR data on mobility of cell-surface proteins reevaluated in terms of temporally constrained molecular motions. Biophys J 64:A354

    Google Scholar 

  30. Kenworthy AK, Nichols BJ, Remmert CL, Hendrix GM, Kumar M, Zimmerberg J, Lippincott-Schwartz J (2004) Dynamics of putative raft-associated proteins at the cell surface. J Cell Biol 165:735–746

    CAS  Google Scholar 

  31. Feder TJ, BrustMascher I, Slattery JP, Baird B, Webb WW (1996) Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys J 70:2767–2773

    CAS  Google Scholar 

  32. Tamm LK (1988) Lateral diffusion and fluorescence microscope studies on a monoclonal-antibody specifically bound to supported phospholipid-bilayers. Biochemistry 27:1450–1457

    CAS  Google Scholar 

  33. Nicolau DV, Hancock J, Burrage K (2008) Sources of anomalous diffusion on cell membranes: a Monte Carlo study. Biophys J 92:1975–1987

    Google Scholar 

  34. Berry H (2002) Monte Carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys J 83:1891–1901

    CAS  Google Scholar 

  35. Weiss M, Hashimoto H, Nilsson T (2003) Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys J 84:4043–4052

    CAS  Google Scholar 

  36. Gielen E, Vercammen J, Sykora J, Humpolickova J, Vandeven M, Benda A, Hellings N, Hof M, Hof M, Engelborghs Y, Steels P, Ameloot M (2005) Diffusion of sphingomyelin and myelin oligodendrocyte glycoprotein in the membrane of OLN-93 oligodendroglial cells studied by fluorescence correlation spectroscopy. C R Biol 328:1057–1064

    CAS  Google Scholar 

  37. Bacia K, Scherfeld D, Kahya N, Schwille P (2004) Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys J 87:1034–1043

    CAS  Google Scholar 

  38. Gombos I, Steinbach GB, Pomozi I, Balogh A, Vamosi G, Gansen A, Laszlo G, Garab G, Matko J (2008) Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells. Cytometry A 73A:220–229

    CAS  Google Scholar 

  39. Wawrezinieck L, Rigneault H, Marguet D, Lenne PF (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89:4029–4042

    CAS  Google Scholar 

  40. Humpolickova J, Gielen E, Benda A, Fagulova V, Vercammen J, Vandeven M, Hof M, Ameloot M, Engelborghs Y (2006) Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys J 91:L23–L25

    CAS  Google Scholar 

  41. Wenger J, Conchonaud F, Dintinger J, Wawrezinieck L, Ebbesen TW, Rigneault H, Marguet D, Lenne PF (2007) Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys J 92:913–919

    CAS  Google Scholar 

  42. Lenne PF, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo XJ, Rigneault H, He HT, Marguet D (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25:3245–3256

    CAS  Google Scholar 

  43. Schwille P (2001) Cross-correlation analysis in FCS. In: Elson EL, Rigler R, Elson EL, Rigler R (eds) Fluorescence correlation spectroscopy. Theory and applications. Springer, Berlin/New York, pp 360–378

    Google Scholar 

  44. Bacia K, Schwille P (2007) Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2(11):2842–2856

    CAS  Google Scholar 

  45. Bacia K, Kim S, Schwille P (2006) Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 3:83–89

    CAS  Google Scholar 

  46. Remaut K, Lucas B, Braeckmans K, Sanders NN, De Smedt SC, Demeester J (2005) FRET-FCS as a tool to evaluate the stability of oligonucleotide drugs after intracellular delivery. J Contr Release 103(1):259–271

    CAS  Google Scholar 

  47. Mashaghi A et al (2008) Characterization of protein dynamics in asymmetric cell division by scanning fluorescence correlation spectroscopy. Biophys J 95(11):5476–5486

    Google Scholar 

  48. Berland KM, So PT, Chen Y, Mantulin WW, Gratton E (1996) Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation. Biophys J 71:410–420

    CAS  Google Scholar 

  49. Petrasek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437–1448

    CAS  Google Scholar 

  50. Wiseman PW, Squier JA, Ellisman MH, Wilson KR (2000) Two-photon video rate image correlation spectroscopy (ICS) and image cross-correlation spectroscopy (ICCS). J Microsc 200:14–25

    CAS  Google Scholar 

  51. Petersen NO, Höddelius PL, Wiseman PW, Seger O, Magnusson KE (1993) Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys J 65:1135–1146

    CAS  Google Scholar 

  52. Hebert B, Constantino S, Wiseman PW (2005) Spatio-temporal image correlation spectroscopy (STICS): theory, verification and application to protein velocity mapping in living CHO cells. Biophys J 88:3601–3614

    CAS  Google Scholar 

  53. Kolin DL, Ronis D, Wiseman PW (2006) k-Space image correlation spectroscopy: a method for accurate transport measurements independent of fluorophore photophysics. Biophys J 91(8):3061–3075

    CAS  Google Scholar 

  54. Digman MA, Sengupta P, Wiseman PW, Brown CM, Horwitz AR, Gratton E (2005) Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys J 88(5):L33–L36

    CAS  Google Scholar 

  55. Skinner JP, Chen Y, Mueller JD (2005) Position-sensitive scanning fluorescence correlation spectroscopy. Biophys J 89(2):1288–1301

    CAS  Google Scholar 

  56. Ruan Q, Cheng MA, Levi M, Gratton E, Mantulin WW (2004) Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys J 87:1260–1267

    CAS  Google Scholar 

  57. Berglund A, Mabuchi H (2005) Tracking-FCS: fluorescence correlation spectroscopy of individual particles. Opt Express 13:8069–8082

    Google Scholar 

  58. Ries J, Yu SR, Burkhardt M, Brand M, Schwille P (2009) Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nat Methods 6(9):643–645

    CAS  Google Scholar 

  59. Sisan DR, Arevalo R, Graves C, McAllister R, Urbach JS (2006) Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope. Biophys J 91(11):4241–4252

    CAS  Google Scholar 

  60. Kannan B, Guo L, Sudhaharan T, Ahmed S, Maruyama I, Wohland T (2007) Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera. Anal Chem 79(12):4463–4470

    CAS  Google Scholar 

  61. Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially resolved fluorescence correlation spectroscopy. J Mol Biol 298(4):677–689

    CAS  Google Scholar 

  62. Lieto AM, Thompson NL (2004) Total internal reflection with fluorescence correlation spectroscopy: nonfluorescent competitors. Biophys J 87(2):1268–1278

    CAS  Google Scholar 

  63. Capoulade J, Wachsmuth M, Hufnagel L, Knop M (2011) Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat Biotechnol 29(9):835–839

    CAS  Google Scholar 

  64. Lieto AM, Cush RC, Thompson NL (2003) Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys J 85:3294–3302

    CAS  Google Scholar 

  65. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97:8206–8210

    CAS  Google Scholar 

  66. Kastrup L, Blom H, Eggeling C, Hell SW (2005) Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys Rev Lett 94:178104

    Google Scholar 

  67. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162

    CAS  Google Scholar 

  68. Gielen E, van de Ven M, Margineanu A, Dedecker P, Van der Auweraer M, Engelborghs Y, Hofkens J, Ameloot M (2009) On the use of Z-scan fluorescence correlation experiments on giant unilamellar vesicles. Chem Phys Lett 469(1–3):110–114

    CAS  Google Scholar 

  69. Singer SJ, Nicolson GL (1972) Fluid mosaic model of structure of cell-membranes. Science 175:720–721

    CAS  Google Scholar 

  70. Vereb G et al (2003) Dynamic, yet structured: the cell membrane three decades after the Singer–Nicolson model. Proc Natl Acad Sci USA 100:8053–8058

    CAS  Google Scholar 

  71. Thompson TE, Tillack TW (1985) Organization of glycosphingolipids in bilayers and plasma-membranes of mammalian-cells. Annu Rev Biophys Biophys Chem 14:361–386

    CAS  Google Scholar 

  72. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    CAS  Google Scholar 

  73. Sharma P, Varma R, Sarasij RC, Ira, Gousset K, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589

    CAS  Google Scholar 

  74. Kiessling V, Wan C, Tamm LK (2009) Domain coupling in asymmetric lipid bilayers. Biochim Biophys Acta Biomembr 1788:64–71

    CAS  Google Scholar 

  75. Ramstedt B, Slotte JP (2006) Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim Biophys Acta Biomembr 1758:1945–1956

    CAS  Google Scholar 

  76. Vigh L, Escriba PV, Sonnleitner A, Sonnleitner M, Piotto S, Maresca B, Horvath I, Harwood JL (2005) The significance of lipid composition for membrane activity: new concepts and ways of assessing function. Prog Lipid Res 44:303–344

    CAS  Google Scholar 

  77. Marguet D, Lenne PF, Rigneault H, He HT (2006) Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J 25:3446–3457

    CAS  Google Scholar 

  78. Blanchette CD, Lin WC, Ratto TV, Longo ML (2006) Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions. Biophys J 90:4466–4478

    CAS  Google Scholar 

  79. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    CAS  Google Scholar 

  80. García-Sáez AJ, Carrer DC, Schwille P (2010) Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles. Methods Mol Biol 606:493–508

    Google Scholar 

  81. García-Sáez AJ, Schwille P (2008) Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions. Methods 46(2):116–122

    Google Scholar 

  82. Simons K, Vaz WLC (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295

    CAS  Google Scholar 

  83. Kahya N, Scherfeld D, Bacia K, Poolman B, Schwille P (2003) Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J Biol Chem 278(30):28109–28115

    CAS  Google Scholar 

  84. Ariola FS, Li Z, Cornejo C, Bittman R, Heikal AA (2009) Membrane fluidity and lipid order in ternary giant unilamellar vesicles using a new bodipy-cholesterol derivative. Biophys J 96(7):2696–2708

    CAS  Google Scholar 

  85. Chiantia S, Schwille P, Klymchenko AS, London E (2011) Asymmetric GUVs prepared by MβCD-mediated lipid exchange: an FCS study. Biophys J 100(1):L1–L3

    CAS  Google Scholar 

  86. Kubiak J, Brewer J, Hansen S, Bagatolli LA (2011) Lipid lateral organization on giant unilamellar vesicles containing lipopolysaccharides. Biophys J 100(4):978–986

    CAS  Google Scholar 

  87. Yurlova L et al (2011) Self-segregation of myelin membrane lipids in model membranes. Biophys J 101(11):2713–2720

    CAS  Google Scholar 

  88. Tai WY et al (2010) Interplay between structure and fluidity of model lipid membranes under oxidative attack. J Phys Chem B 114(47):15642–15649

    CAS  Google Scholar 

  89. Kahya N, Brown DA, Schwille P (2005) Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 44(20):7479–7489

    CAS  Google Scholar 

  90. Stachowiak JC et al (2011) Targeting proteins to liquid-ordered domains in lipid membranes. Langmuir 27(4):1457–1462

    CAS  Google Scholar 

  91. García-Sáez AJ, Ries J, Orzáez M, Pérez-Payà E, Schwille P (2009) Membrane promotes tBID interaction with BCLXL. Nat Struct Mol Biol 16:1178–1185

    Google Scholar 

  92. Betaneli V, Petrov EP, Schwille P (2012) The role of lipids in VDAC oligomerization. Biophys J 102(3):523–531

    CAS  Google Scholar 

  93. Kedrov A et al (2011) A single copy of SecYEG is sufficient for preprotein translocation. EMBO J 30:4387–4397

    CAS  Google Scholar 

  94. Chiantia S, Kahya N, Ries J, Schwille P (2006) Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys J 90:4500–4508

    CAS  Google Scholar 

  95. Jonas R et al (2009) Accurate determination of membrane dynamics with Line-Scan FCS. Biophys J 96:1999–2008

    Google Scholar 

  96. Chiantia S, Ries J, Kahya N, Schwille P (2006) Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. Chemphyschem 7:2409–2418

    CAS  Google Scholar 

  97. Chiantia S, Kahya N, Schwille P (2007) Raft domain reorganization driven by short – and long-chain ceramide: a combined AFM and FCS study. Langmuir 23:7659–7665

    CAS  Google Scholar 

  98. Weiß K, Enderlein J (2012) Lipid diffusion within black lipid membranes measured with dual-focus fluorescence correlation spectroscopy. Chemphyschem 13:990–1000

    Google Scholar 

  99. Macháň R et al (2011) Formation of arenicin-1 microdomains in bilayers and their specific lipid interaction revealed by Z-scan FCS. Anal Bioanal Chem 399(10):3547–3554

    Google Scholar 

  100. Przybylo M et al (2006) Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. Langmuir 22(22):9096–9099

    CAS  Google Scholar 

  101. Meissner O, Häberlein H (2003) Lateral mobility and specific binding to GABA(A) receptors on hippocampal neurons monitored by fluorescence correlation spectroscopy. Biochemistry 42(6):1667–1672

    CAS  Google Scholar 

  102. Patel RC et al (2002) Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells. Proc Natl Acad Sci USA 99(5):3294–3299

    CAS  Google Scholar 

  103. Weidemann T et al (2011) Single cell analysis of ligand binding and complex formation of interleukin-4 receptor subunits. Biophys J 101(10):2360–2369

    CAS  Google Scholar 

  104. Briddon SJ et al (2004) Quantitative analysis of the formation and diffusion of A1-adenosinereceptor-antagonist complexes in single living cells. Proc Natl Acad Sci USA 101(13):4673–4678

    CAS  Google Scholar 

  105. Xu L, Pallikkuth S, Hou Z, Mignery GA, Robia SL, Han R (2011) Dysferlin forms a dimer mediated by the C2 domains and the transmembrane domain in vitro and in living cells. PLoS One 6(11)

    Google Scholar 

  106. Liu P et al (2007) Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy. Biophys J 93(2):684–698

    CAS  Google Scholar 

  107. García-Sáez AJ, Buschhorn SB, Keller H, Anderluh G, Simons K, Schwille P (2011) Oligomerization and pore formation by equinatoxin II inhibit endocytosis and lead to plasma membrane reorganization. J Biol Chem 286(43):37768–37777

    Google Scholar 

  108. Lasserre R et al (2008) Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat Chem Biol 4(9):538–547

    CAS  Google Scholar 

  109. Golebiewska U, Nyako M, Woturski W, Zaitseva I, McLaughlin S (2008) Diffusion coefficient of fluorescent phosphatidylinositol 4,5-bisphosphate in the plasma membrane of cells. Mol Biol Cell 19(4):1663–1669

    CAS  Google Scholar 

  110. Ganguly S, Chattopadhyay A (2010) Cholesterol depletion mimics the effect of cytoskeletal destabilization on membrane dynamics of the serotonin1A receptor: a zFCS study. Biophys J 99(5):1397–1407

    CAS  Google Scholar 

  111. Larson DR, Gosse JA, Holowka DA, Baird BA, Webb WW (2005) Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. J Cell Biol 171(3):527–536

    CAS  Google Scholar 

  112. Philip F, Sengupta P, Scarlata S (2007) Signaling through a G protein-coupled receptor and its corresponding G protein follows a stoichiometrically limited model. J Biol Chem 282(26):19203–19216

    CAS  Google Scholar 

  113. Mueller V et al (2011) STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys J 101(7):1651–1660

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana J. García-Sáez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zelman-Femiak, M., Subburaj, Y., García-Sáez, A.J. (2012). Fluorescence Correlation Spectroscopy to Study Membrane Organization and Interactions. In: Mély, Y., Duportail, G. (eds) Fluorescent Methods to Study Biological Membranes. Springer Series on Fluorescence, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2012_49

Download citation

Publish with us

Policies and ethics