Skip to main content

Visual Discrimination of Membrane Domains in Live Cells by Widefield Microscopy

  • Chapter
  • First Online:
Fluorescent Methods to Study Biological Membranes

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 13))

Abstract

Membrane dynamics is a fast-evolving field with the many new methods and probes being developed each year affording ever increased insights into how membranes behave in the laboratory. Typically, these developments are first tested in model membranes using high-cost, bespoke microscopes which often employ confocal and two-photon systems and which give little consideration to preservation of cellular integrity and homeostasis during experiments. This chapter addresses the clear need to rapidly apply and deploy this work into mainstream biological laboratories by development of economical, four-dimensional imaging on user-friendly low-cost systems using widefield optics and simultaneous capture of multiple fluorescent markers. Such systems are enabling biologists to consider the coordinated processes triggered from signalling platforms during cellular interaction with the environment. In this chapter, we describe the progress made to date and in particular we focus on the Laurdan family of fluorescent probes, which are being used to image whole cells and tissues using widefield epifluorescence microscopy and which can be usefully combined with simultaneous capture at longer wavelengths (yellow through far red) for imaging of cell morphology or for following expressed markers such as fluorescent adaptor proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50

    Article  CAS  Google Scholar 

  2. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  CAS  Google Scholar 

  3. Levental I et al (2010) Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci U S A 107(51):22050–22054

    Article  CAS  Google Scholar 

  4. Lisanti MP, Tang ZL, Sargiacomo M (1993) Caveolin forms a hetero-oligomeric protein complex that interacts with an apical GPI-linked protein: implications for the biogenesis of caveolae. J Cell Biol 123(3):595–604

    Article  CAS  Google Scholar 

  5. Badizadegan K et al (2004) Trafficking of cholera toxin-ganglioside GM1 complex into Golgi and induction of toxicity depend on actin cytoskeleton. Am J Physiol Cell Physiol 287(5):C1453–C1462

    Article  CAS  Google Scholar 

  6. Pike LJ (2006) Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J Lipid Res 47(7):1597–1598

    Article  CAS  Google Scholar 

  7. Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 1746(3):234–251

    Article  CAS  Google Scholar 

  8. Lai EC (2003) Lipid rafts make for slippery platforms. J Cell Biol 162(3):365–370

    Article  CAS  Google Scholar 

  9. Zacharias DA (2002) Sticky caveats in an otherwise glowing report: oligomerizing fluorescent proteins and their use in cell biology. Sci STKE 2002(131):pe23

    Article  Google Scholar 

  10. Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3(10):a004697

    Article  Google Scholar 

  11. Lang T (2007) SNARE proteins and ‘membrane rafts’. J Physiol 585(Pt 3):693–698

    Article  CAS  Google Scholar 

  12. Insel PA et al (2005) Compartmentation of G-protein-coupled receptors and their signalling components in lipid rafts and caveolae. Biochem Soc Trans 33(Pt 5):1131–1134

    CAS  Google Scholar 

  13. Zhang Y et al (2009) Ceramide-enriched membrane domains–structure and function. Biochim Biophys Acta 1788(1):178–183

    Article  CAS  Google Scholar 

  14. Lajoie P et al (2009) Caveolin-1 regulation of dynamin-dependent, raft-mediated endocytosis of cholera toxin-B sub-unit occurs independently of caveolae. J Cell Mol Med 13(9B):3218–3225

    Article  Google Scholar 

  15. Tyler KM et al (2009) Flagellar membrane localization via association with lipid rafts. J Cell Sci 122(Pt 6):859–866

    Article  CAS  Google Scholar 

  16. Vieira OV et al (2006) FAPP2, cilium formation, and compartmentalization of the apical membrane in polarized Madin-Darby canine kidney (MDCK) cells. Proc Natl Acad Sci U S A 103(49):18556–18561

    Article  CAS  Google Scholar 

  17. Bagnat M, Simons K (2002) Cell surface polarization during yeast mating. Proc Natl Acad Sci U S A 99(22):14183–14188

    Article  CAS  Google Scholar 

  18. Reyes-Del Valle J et al (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79(8):4557–4567

    Article  CAS  Google Scholar 

  19. Liu NQ et al (2002) Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J Virol 76(13):6689–6700

    Article  CAS  Google Scholar 

  20. Watson RO, Galan JE (2008) Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS Pathog 4(1):e14

    Article  Google Scholar 

  21. Silvie O et al (2006) Cholesterol contributes to the organization of tetraspanin-enriched microdomains and to CD81-dependent infection by malaria sporozoites. J Cell Sci 119(Pt 10):1992–2002

    Article  CAS  Google Scholar 

  22. Fernandes MC et al (2007) Novel strategy in Trypanosoma cruzi cell invasion: implication of cholesterol and host cell microdomains. Int J Parasitol 37(13):1431–1441

    Article  CAS  Google Scholar 

  23. Kuziemko GM, Stroh M, Stevens RC (1996) Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry 35(20):6375–6384

    Article  CAS  Google Scholar 

  24. Knorr R, Karacsonyi C, Lindner R (2009) Endocytosis of MHC molecules by distinct membrane rafts. J Cell Sci 122(Pt 10):1584–1594

    Article  CAS  Google Scholar 

  25. Antes P, Schwarzmann G, Sandhoff K (1992) Detection of protein mediated glycosphingolipid clustering by the use of resonance energy transfer between fluorescent labelled lipids. A method established by applying the system ganglioside GM1 and cholera toxin B subunit. Chem Phys Lipids 62(3):269–280

    Article  CAS  Google Scholar 

  26. Janes PW, Ley SC, Magee AI (1999) Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol 147(2):447–461

    Article  CAS  Google Scholar 

  27. Chakraborty SK et al (2007) Cholera toxin B conjugated quantum dots for live cell labeling. Nano Lett 7(9):2618–2626

    Article  CAS  Google Scholar 

  28. Rivera EM et al (2011) Imaging heterostructured quantum dots in cultured cells with epifluorescence and transmission electron microscopy. Proc SPIE 7909:79090N

    Article  Google Scholar 

  29. Steinert S et al (2008) A fluorescent glycolipid-binding peptide probe traces cholesterol dependent microdomain-derived trafficking pathways. PLoS One 3(8):e2933

    Article  Google Scholar 

  30. Hebbar S et al (2008) A fluorescent sphingolipid binding domain peptide probe interacts with sphingolipids and cholesterol-dependent raft domains. J Lipid Res 49(5):1077–1089

    Article  CAS  Google Scholar 

  31. Pike LJ et al (2002) Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41(6):2075–2088

    Article  CAS  Google Scholar 

  32. Kiyokawa E et al (2004) Recognition of sphingomyelin by lysenin and lysenin-related proteins. Biochemistry 43(30):9766–9773

    Article  CAS  Google Scholar 

  33. Kiyokawa E et al (2005) Spatial and functional heterogeneity of sphingolipid-rich membrane domains. J Biol Chem 280(25):24072–24084

    Article  CAS  Google Scholar 

  34. Kidani Y et al (2012) Differential localization of sphingomyelin synthase isoforms in neurons regulates sphingomyelin cluster formation. Biochem Biophys Res Commun 417(3):1014–1017

    Article  CAS  Google Scholar 

  35. Yamaji A et al (1998) Lysenin, a novel sphingomyelin-specific binding protein. J Biol Chem 273(9):5300–5306

    Article  CAS  Google Scholar 

  36. Kobayashi H, Suzuki H, Ohta N (2006) Exfoliation of the epidermal cells and defecation by amphibian larvae in response to coelomic fluid and lysenin from the earthworm Eisenia foetida. Biomed Res 27(4):169–181

    Article  CAS  Google Scholar 

  37. Bittman R, Fischkoff SA (1972) Fluorescence studies of the binding of the polyene antibiotics filipin 3, amphotericin B, nystatin, and lagosin to cholesterol. Proc Natl Acad Sci U S A 69(12):3795–3799

    Article  CAS  Google Scholar 

  38. Orci L et al (1981) Heterogeneous distribution of filipin–cholesterol complexes across the cisternae of the Golgi apparatus. Proc Natl Acad Sci U S A 78(1):293–297

    Article  CAS  Google Scholar 

  39. Ohno-Iwashita Y et al (2004) Perfringolysin O, a cholesterol-binding cytolysin, as a probe for lipid rafts. Anaerobe 10(2):125–134

    Article  CAS  Google Scholar 

  40. Hayashi M et al (2006) Detection of cholesterol-rich microdomains in the inner leaflet of the plasma membrane. Biochem Biophys Res Commun 351(3):713–718

    Article  CAS  Google Scholar 

  41. Schroeder F et al (1991) Transmembrane distribution of sterol in the human erythrocyte. Biochim Biophys Acta 1066(2):183–192

    Article  CAS  Google Scholar 

  42. Mukherjee S et al (1998) Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J 75(4):1915–1925

    Article  CAS  Google Scholar 

  43. Wustner D (2007) Plasma membrane sterol distribution resembles the surface topography of living cells. Mol Biol Cell 18(1):211–228

    Article  CAS  Google Scholar 

  44. Tasset C et al (1992) Comparison of nephrotoxicities of different polyoxyethyleneglycol formulations of amphotericin B in rats. Antimicrob Agents Chemother 36(7):1525–1531

    Article  CAS  Google Scholar 

  45. Nagy E et al (2007) Hyperfluidization-coupled membrane microdomain reorganization is linked to activation of the heat shock response in a murine melanoma cell line. Proc Natl Acad Sci U S A 104(19):7945–7950

    Article  CAS  Google Scholar 

  46. Sato SB et al (2004) Distribution and transport of cholesterol-rich membrane domains monitored by a membrane-impermeant fluorescent polyethylene glycol-derivatized cholesterol. J Biol Chem 279(22):23790–23796

    Article  CAS  Google Scholar 

  47. Pagano RE et al (1991) A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J Cell Biol 113(6):1267–1279

    Article  CAS  Google Scholar 

  48. Marks DL, Bittman R, Pagano RE (2008) Use of Bodipy-labeled sphingolipid and cholesterol analogs to examine membrane microdomains in cells. Histochem Cell Biol 130(5):819–832

    Article  CAS  Google Scholar 

  49. D’Auria L et al (2011) Segregation of fluorescent membrane lipids into distinct micrometric domains: evidence for phase compartmentation of natural lipids? PLoS One 6(2):e17021

    Article  Google Scholar 

  50. Greaves J, Chamberlain LH (2011) Differential palmitoylation regulates intracellular patterning of SNAP25. J Cell Sci 124(Pt 8):1351–1360

    Article  CAS  Google Scholar 

  51. Lajoie P, Nabi IR (2007) Regulation of raft-dependent endocytosis. J Cell Mol Med 11(4):644–653

    Article  CAS  Google Scholar 

  52. Anderson RG (1993) Plasmalemmal caveolae and GPI-anchored membrane proteins. Curr Opin Cell Biol 5(4):647–652

    Article  CAS  Google Scholar 

  53. Rothberg KG et al (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68(4):673–682

    Article  CAS  Google Scholar 

  54. Scherer PE et al (1997) Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 272(46):29337–29346

    Article  CAS  Google Scholar 

  55. Tang Z et al (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271(4):2255–2261

    Article  CAS  Google Scholar 

  56. Parton RG (1996) Caveolae and caveolins. Curr Opin Cell Biol 8(4):542–548

    Article  CAS  Google Scholar 

  57. Mundy DI et al (2002) Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115(Pt 22):4327–4339

    Article  CAS  Google Scholar 

  58. Glebov OO, Bright NA, Nichols BJ (2006) Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 8(1):46–54

    Article  CAS  Google Scholar 

  59. Frick M et al (2007) Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol 17(13):1151–1156

    Article  CAS  Google Scholar 

  60. Riento K et al (2009) Endocytosis of flotillin-1 and flotillin-2 is regulated by Fyn kinase. J Cell Sci 122(Pt 7):912–918

    Article  CAS  Google Scholar 

  61. Blanchet MH et al (2008) Cripto recruits Furin and PACE4 and controls Nodal trafficking during proteolytic maturation. EMBO J 27(19):2580–2591

    Article  CAS  Google Scholar 

  62. Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18(14):3075–3078

    Article  CAS  Google Scholar 

  63. Bagatolli LA et al (1999) A model for the interaction of 6-lauroyl-2-(N, N-dimethylamino)naphthalene with lipid environments: implications for spectral properties. Photochem Photobiol 70(4):557–564

    Article  CAS  Google Scholar 

  64. Parasassi T et al (1990) Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J 57(6):1179–1186

    Article  CAS  Google Scholar 

  65. Parasassi T et al (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J 60(1):179–189

    Article  CAS  Google Scholar 

  66. Buffone MG et al (2009) High cholesterol content and decreased membrane fluidity in human spermatozoa are associated with protein tyrosine phosphorylation and functional deficiencies. J Androl 30(5):552–558

    Article  CAS  Google Scholar 

  67. Kaiser HJ et al (2011) Molecular convergence of bacterial and eukaryotic surface order. J Biol Chem 286(47):40631–40637

    Article  CAS  Google Scholar 

  68. Gaus K et al (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci U S A 100(26):15554–15559

    Article  CAS  Google Scholar 

  69. Khan NA et al (2011) Stability of fatty acids during wilting of perennial ryegrass (Lolium perenne L.): effect of bruising and environmental conditions. J Sci Food Agric 91(9):1659–1665

    Article  CAS  Google Scholar 

  70. Owen DM et al (2010) Imaging membrane lipid order in whole, living vertebrate organisms. Biophys J 99(1):L7–L9

    Article  Google Scholar 

  71. Wheeler G, Tyler KM (2011) Widefield microscopy for live imaging of lipid domains and membrane dynamics. Biochim Biophys Acta 1808(3):634–641

    Article  CAS  Google Scholar 

  72. Hansen JS, Helix-Nielsen C (2011) An epifluorescence microscopy method for generalized polarization imaging. Biochem Biophys Res Commun 415(4):686–690

    Article  CAS  Google Scholar 

  73. Sanchez SA, Tricerri MA, Gratton E (2007) Interaction of high density lipoprotein particles with membranes containing cholesterol. J Lipid Res 48(8):1689–1700

    Article  CAS  Google Scholar 

  74. Weber P, Wagner M, Schneckenburger H (2010) Fluorescence imaging of membrane dynamics in living cells. J Biomed Opt 15(4):046017

    Article  Google Scholar 

  75. Toyoda T et al (2009) Thermo-sensitive response based on the membrane fluidity adaptation in Paramecium multimicronucleatum. J Exp Biol 212(17):2767–2772

    Article  CAS  Google Scholar 

  76. Sitrin RG et al (2010) Migrating human neutrophils exhibit dynamic spatiotemporal variation in membrane lipid organization. Am J Respir Cell Mol Biol 43(4):498–506

    Article  CAS  Google Scholar 

  77. Parasassi T et al (1997) Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J 72(6):2413–2429

    Article  CAS  Google Scholar 

  78. Kim HM et al (2007) A two-photon fluorescent probe for lipid raft imaging: C-laurdan. Chembiochem 8(5):553–559

    Article  CAS  Google Scholar 

  79. Klemm RW et al (2009) Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J Cell Biol 185(4):601–612

    Article  CAS  Google Scholar 

  80. Jin L et al (2005) Cholesterol-enriched lipid domains can be visualized by di-4-ANEPPDHQ with linear and nonlinear optics. Biophys J 89(1):L04–L06

    Article  CAS  Google Scholar 

  81. Jin L et al (2006) Characterization and application of a new optical probe for membrane lipid domains. Biophys J 90(7):2563–2575

    Article  CAS  Google Scholar 

  82. Dinic J et al (2011) Laurdan and di-4-ANEPPDHQ do not respond to membrane-inserted peptides and are good probes for lipid packing. Biochim Biophys Acta 1808(1):298–306

    Article  CAS  Google Scholar 

  83. Owen DM, Gaus K (2010) Optimized time-gated generalized polarization imaging of Laurdan and di-4-ANEPPDHQ for membrane order image contrast enhancement. Microsc Res Tech 73(6):618–622

    CAS  Google Scholar 

  84. Llopis J et al (2000) Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc Natl Acad Sci U S A 97(8):4363–4368

    Article  CAS  Google Scholar 

  85. Miyawaki A (2011) Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Annu Rev Biochem 80:357–373

    Article  CAS  Google Scholar 

  86. Miyawaki A, Tsien RY (2000) Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol 327:472–500

    Article  CAS  Google Scholar 

  87. Nagai T et al (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87–90

    Article  CAS  Google Scholar 

  88. Griesbeck O et al (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276(31):29188–29194

    Article  CAS  Google Scholar 

  89. Rao M, Mayor S (2005) Use of Forster’s resonance energy transfer microscopy to study lipid rafts. Biochim Biophys Acta 1746(3):221–233

    Article  CAS  Google Scholar 

  90. Ariola FS et al (2009) Membrane fluidity and lipid order in ternary giant unilamellar vesicles using a new bodipy-cholesterol derivative. Biophys J 96(7):2696–2708

    Article  CAS  Google Scholar 

  91. Bader AN et al (2009) Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys J 97(9):2613–2622

    Article  CAS  Google Scholar 

  92. Sharma SD et al (2004) Radiochromic film measurement of anisotropy function for high-dose-rate Ir-192 brachytherapy source. Phys Med Biol 49(17):4065–4072

    Article  CAS  Google Scholar 

  93. Hoppe AD et al (2008) Three-dimensional FRET reconstruction microscopy for analysis of dynamic molecular interactions in live cells. Biophys J 95(1):400–418

    Article  CAS  Google Scholar 

  94. Verveer PJ, Squire A, Bastiaens PI (2000) Global analysis of fluorescence lifetime imaging microscopy data. Biophys J 78(4):2127–2137

    Article  CAS  Google Scholar 

  95. de Almeida RF, Loura LM, Prieto M (2009) Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging. Chem Phys Lipids 157(2):61–77

    Article  Google Scholar 

  96. Owen DM et al (2006) Fluorescence lifetime imaging provides enhanced contrast when imaging the phase-sensitive dye di-4-ANEPPDHQ in model membranes and live cells. Biophys J 90(11):L80–L82

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Paul Thomas at The Wellcome Laboratory for cell imaging for critical reading of the manuscript and advice and insight along the way and Rosanna Davies for her tremendous illustrative skills in producing the drawing of our widefield Laurdan microscopy setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Tyler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Butler, C.E., Wheeler, G., Graham, J., Tyler, K.M. (2012). Visual Discrimination of Membrane Domains in Live Cells by Widefield Microscopy. In: Mély, Y., Duportail, G. (eds) Fluorescent Methods to Study Biological Membranes. Springer Series on Fluorescence, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2012_47

Download citation

Publish with us

Policies and ethics