Skip to main content

One-Photon and Two-Photon Excitation of Fluorescent Proteins

  • Chapter
  • First Online:
Fluorescent Proteins I

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 11))

Abstract

Fluorescent proteins (FPs) offer a wide palette of colors for imaging applications. One purpose of this chapter is to review the variety of FP spectral properties, with a focus on their structural basis. Fluorescence in FPs originates from the autocatalytically formed chromophore. Several studies exist on synthetic chromophore analogs in gas phase and in solution. Together with the X-ray structures of many FPs, these studies help to understand how excitation and emission energies are tuned by chromophore structure, protonation state, and interactions with the surrounding environment, either solvent molecules or amino acids residues. The increasing use of FPs in two-photon microscopy also prompted detailed investigations of their two-photon excitation properties. The comparison with one-photon excitation reveals nontrivial features, which are relevant both for their implications in understanding multiphoton properties of fluorophores and for application purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    AsFP595 chromophore structure has been subject to debate, regarding the possible presence of an imino (NH) group in place of the keto group at position 2 of the imidazolinone (see discussion in [50]).

  2. 2.

    The early study by Niwa et al. used ethyl 4-(4-hydroxyphenyl)methylidene-2-methyl-5-oxo-1-imidazolacetate, a model chromophore with the methyl group in p-HBDI substituted with CO2C2H5.

  3. 3.

    Somewhat upsetting this picture, Wachter and coworkers pointed out that a very similar arrangement of three H-bond donors would also be present in the immature form of the DsRed protein, which, however, emits green, not cyan, light [86]. However, no isolated structure of DsRed with immature green chromophore is available, the X-ray structures being a mixture of mature and immature structures.

  4. 4.

    In avGFP mutants, such as EYFP, featuring the anionic band only, the neutral band emerges by decreasing the pH below the protein pKa.

References

  1. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of Aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    CAS  Google Scholar 

  2. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green fluorescent protein. Gene 111:229–233

    CAS  Google Scholar 

  3. Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–805

    CAS  Google Scholar 

  4. Inouye S, Tsuji FI (1994) Aequorea green fluorescent protein: expression of the gene and fluorescent characteristics of the recombinant protein. FEBS Lett 341:277–280

    CAS  Google Scholar 

  5. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    CAS  Google Scholar 

  6. Matz M, Fradkov AF, Labas Y, Savitsky A, Zaraisky AG, Markelov AZ, Lukyanov SA (1999) Fluorescent proteins from non-bioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    CAS  Google Scholar 

  7. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909

    CAS  Google Scholar 

  8. Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73(5):2782–2790

    CAS  Google Scholar 

  9. Pakhomov AA, Martynov VI (2008) GFP family: structural insights into spectral tuning. Chem Biol 15(8):755–764

    CAS  Google Scholar 

  10. Brejc K, Sixma TK, Kitts PA, Kain SR, Tsien RY, Ormö M, Remington SJ (1997) Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci USA 94:2306–2311

    CAS  Google Scholar 

  11. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455

    CAS  Google Scholar 

  12. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 91:12501–12504

    CAS  Google Scholar 

  13. Wachter RM (2007) Chromogenic cross-link formation in green fluorescent protein. Acc Chem Res 40(2):120–127

    CAS  Google Scholar 

  14. Wachter RM, Watkins JL, Kim H (2010) Mechanistic diversity of red fluorescence acquisition by GFP-like proteins. Biochemistry 49(35):7417–7427

    CAS  Google Scholar 

  15. Kummer AD, Kompa C, Lossau H, Pollinger-Dammer F, Michel-Beyerle ME, Silva CM, Bylina EJ, Coleman WJ, Yang MM, Youvan DC (1998) Dramatic reduction in fluorescence quantum yield in mutants of green fluorescent protein due to fast internal conversion. Chem Phys 237:183–193

    CAS  Google Scholar 

  16. Ward WW, Bokman SH (1982) Reversible denaturation of Aequorea green fluorescent protein: physical separation and characterization of the renatured protein. Biochemistry 21:4535–4540

    CAS  Google Scholar 

  17. Bell AF, He X, Wachter RM, Tonge PJ (2000) Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy. Biochemistry 39:4423–4431

    CAS  Google Scholar 

  18. Chattoraj M, King BA, Bublitz GU, Boxer SG (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci USA 93:8362–8367

    CAS  Google Scholar 

  19. Bizzarri R, Nifosì R, Abbruzzetti S, Rocchia W, Guidi S, Arosio D, Garau G, Campanini B, Grandi E, Ricci F, Viappiani C, Beltram F (2007) Green fluorescent protein ground states: the influence of a second protonation site near the chromophore. Biochemistry 46(18):5494–5504

    CAS  Google Scholar 

  20. Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664

    CAS  Google Scholar 

  21. Ai H-W, Shaner NC, Cheng Z, Tsien RY, Campbell RE (2007) Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46(20):5904–5910

    CAS  Google Scholar 

  22. Mena MA, Treynor TP, Mayo SL, Daugherty PS (2006) Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotechnol 24(12):1569–1571

    CAS  Google Scholar 

  23. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for fret. Nat Biotechnol 22(4):445–449

    CAS  Google Scholar 

  24. Ai H-W, Hazelwood KL, Davidson MW, Campbell RE (2008) Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods 5(5):401–403

    CAS  Google Scholar 

  25. Zapata-Hommer O, Griesbeck O (2003) Efficiently folding and circularly permuted variants of the sapphire mutant of GFP. BMC Biotechnol 3:5

    Google Scholar 

  26. Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306(5700):1370–1373

    CAS  Google Scholar 

  27. Wachter RM, Elsliger MA, Kallio K, Hanson GT, Remington SJ (1998) Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure 6:1267–1277

    CAS  Google Scholar 

  28. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87–90

    CAS  Google Scholar 

  29. Nguyen AW, Daugherty PS (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23:355–360

    CAS  Google Scholar 

  30. Shagin DA, Barsova EV, Yanushevich YG, Fradkov AF, Lukyanov KA, Labas YA, Semenova TN, Ugalde JA, Meyers A, Nunez JM, Widder EA, Lukyanov SA, Matz MV (2004) GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol Biol Evol 21(5):841–850

    CAS  Google Scholar 

  31. Karasawa S, Araki T, Nagai T, Mizuno H, Miyawaki A (2004) Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J 381:307–312

    CAS  Google Scholar 

  32. Shaner N, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nat Biotechnol 22:1567–1572

    CAS  Google Scholar 

  33. Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24(4):461–465

    CAS  Google Scholar 

  34. Nienhaus K, Nienhaus GU, Wiedenmann J, Nar H (2005) Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc Natl Acad Sci USA 102(26):9156–9159

    CAS  Google Scholar 

  35. Mizuno H, Mal TK, Tong KI, Ando R, Furuta T, Ikura M, Miyawaki A (2003) Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell 12:1051–1058

    CAS  Google Scholar 

  36. Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao X, Fang Y, Tan W, Lukyanov SA (2000) Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275(34):25879–25882

    CAS  Google Scholar 

  37. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882

    CAS  Google Scholar 

  38. Wiedenmann J, Schenk A, Rcker C, Girod A, Spindler K-D, Nienhaus GU (2002) A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from entacmaea quadricolor (anthozoa, actinaria). Proc Natl Acad Sci USA 99(18):11646–11651

    CAS  Google Scholar 

  39. Prescott M, Ling M, Beddoe T, Oakley AJ, Dove S, Hoegh-Guldberg O, Devenish RJ, Rossjohn J (2003) The 2.2 Å crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. Structure 22:275–284

    Google Scholar 

  40. Wang L, Jackson WC, Steinbach PA, Tsien RY (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci USA 101(48):16745–16749

    CAS  Google Scholar 

  41. Lin MZ, McKeown MR, Ng H-L, Aguilera TA, Shaner NC, Campbell RE, Adams SR, Gross LA, Ma W, Alber T, Tsien RY (2009) Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol 16(11):1169–1179

    CAS  Google Scholar 

  42. Chan MCY, Karasawa S, Mizuno H, Bosanac I, Ho D, Priv GG, Miyawaki A, Ikura M (2006) Structural characterization of a blue chromoprotein and its yellow mutant from the sea anemone Cnidopus japonicus. J Biol Chem 281(49):37813–37819

    CAS  Google Scholar 

  43. Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY (2000) The structure of the chromophore within dsred, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11990–11995

    CAS  Google Scholar 

  44. Petersen J, Wilmann PG, Beddoe T, Oakley AJ, De-venish RJ, Prescott M, Rossjohn J (2003) The 2.0-angstrom crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J Biol Chem 287:44626–44631

    Google Scholar 

  45. Shu X, Shaner NC, Yarbrough CA, Tsien RY, Remington SJ (2006) Novel chromophores and buried charges control color in mFruits. Biochemistry 45(32):9639–9647

    CAS  Google Scholar 

  46. Kikuchi A, Fukumura E, Karasawa S, Mizuno H, Miyawaki A, Shiro Y (2008) Structural characterization of a thiazoline-containing chromophore in an orange fluorescent protein, monomeric Kusabira Orange. Biochemistry 47(44):11573–11580

    CAS  Google Scholar 

  47. Remington SJ, Wachter RM, Yarbrough DK, Branchaud B, Anderson DC, Kallio K, Lukyanov KA (2005) zFP538, a yellow-fluorescent protein from Zoanthus, contains a novel three-ring chromophore. Biochemistry 44(1):202–212

    CAS  Google Scholar 

  48. Quillin ML, Anstrom DM, Shu X, O’Leary S, Kallio K, Chudakov DM, Remington SJ (2005) Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 Å resolution. Biochemistry 44(15):5774–5787

    CAS  Google Scholar 

  49. Tretyakova YA, Pakhomov AA, Martynov VI (2007) Chromophore structure of the kindling fluorescent protein asFP595 from Anemonia sulcata. J Am Chem Soc 129:7748–7749

    CAS  Google Scholar 

  50. Yampolsky IV, Remington SJ, Martynov VI, Potapov VK, Lukyanov S, Lukyanov KA (2005) Synthesis and properties of the chromophore of the asFP595 chromoprotein from Anemonia sulcata. Biochemistry 44(15):5788–5793

    CAS  Google Scholar 

  51. Schäfer LV, Groenhof G, Klingen AR, Ullmann GM, Boggio-Pasqua M, Robb MA, Grubmüller H (2007) Photoswitching of the fluorescent protein asFP595: mechanism, proton pathways, and absorption spectra. Angew Chem 119:536–542

    Google Scholar 

  52. Weber W, Helms V, McCammon JA, Langhoff PW (1999) Shedding light on the dark and weakly fluorescent states of green fluorescent proteins. Proc Natl Acad Sci USA 96:6177–6182

    CAS  Google Scholar 

  53. He X, Bell AF, Tonge PJ (2002) Isotopic labeling and normal-mode analysis of a model green fluorescent protein chromophore. J Phys Chem B 106:6056–6066

    CAS  Google Scholar 

  54. Niwa H, Inouye S, Hirano T, Matsuno T, Kojima S, Kubota M, Ohashi M, Tsuji FI (1996) Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Nat Acad Sci USA 93:13617–13622

    CAS  Google Scholar 

  55. Voliani V, Bizzarri R, Nifosì R, Abbruzzetti S, Grandi E, Viappiani C, Beltram F (2008) Cis–trans photoisomerization of fluorescent-protein chromophores. J Phys Chem B 112(34):10714–10722

    CAS  Google Scholar 

  56. Nielsen SB, Lapierre A, Andersen JU, Pedersen UV, Tomita S, Andersen LH (2001) Absorption spectrum of the green fluorescent protein chromophore anion in vacuo. Phys Rev Lett 87:228102

    CAS  Google Scholar 

  57. Dong J, Solntsev KM, Tolbert LM (2006) Solvatochromism of the green fluorescence protein chromophore and its derivatives. J Am Chem Soc 128(37):12038–12039

    CAS  Google Scholar 

  58. Yampolsky IV, Balashova TA, Lukyanov KA (2009) Synthesis and spectral and chemical properties of the yellow fluorescent protein zFP538 chromophore. Biochemistry 48:8077–8082

    CAS  Google Scholar 

  59. Boy S, Krogh H, Nielsen IB, Nielsen SB, Pedersen SU, Pedersen UV, Andersen LH, Bell AF, He X, Tonge PJ (2003) Vibrationally resolved photoabsorption spectroscopy of red fluorescent protein chromophore anions. Phys Rev Lett 90(11):118103

    Google Scholar 

  60. Yampolsky IV, Kislukhin AA, Amatov TT, Shcherbo D, Potapov VK, Lukyanov S, Lukyanov KA (2008) Synthesis and properties of the red chromophore of the green-to-red photoconvertible fluorescent protein Kaede and its analogs. Bioorg Chem 36(2):96–104

    CAS  Google Scholar 

  61. Wachter RM, King BA, Heim R, Kallio K, Tsien RY, Boxer SG, Remington SJ (1997) Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein. Biochemistry 36:9759–9765

    CAS  Google Scholar 

  62. Forbes MW, Jockusch RA (2009) Deactivation pathways of an isolated green fluorescent protein model chromophore studied by electronic action spectroscopy. J Am Chem Soc 131(47):17038–17039

    CAS  Google Scholar 

  63. Boyé S, Nielsen SB, Krogh H, Nielsen IB, Pedersen UV, Bell AF, He X, Tonge PJ, Andersen LH (2003) Gas-phase absorption properties of DsRed model chromophores. Phys Chem Chem Phys 5(14):3021–3026

    Google Scholar 

  64. Andersen L, Lapierre A, Nielsen S, Nielsen I, Pedersen S, Pedersen U, Tomita S (2002) Chromophores of the green fluorescent protein studied in the gas phase. Eur Phys J D 20:597–600

    CAS  Google Scholar 

  65. Lammich L, Petersen MA, Nielsen MB, Andersen LH (2007) The gas-phase absorption spectrum of a neutral GFP model chromophore. Biophys J 92(1):201–207

    CAS  Google Scholar 

  66. Filippi C, Zaccheddu M, Buda F (2009) Absorption spectrum of the green fluorescent protein chromophore: a difficult case for ab initio methods? J Chem Theory Comput 5(8):2074–2087

    CAS  Google Scholar 

  67. Drobizhev M, Tillo S, Makarov NS, Hughes TE, Rebane A (2009) Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins. J Phys Chem B 113(4):855–859

    CAS  Google Scholar 

  68. Mandal D, Tahara T, Meech SR (2004) Excited-state dynamics in the green fluorescent protein chromophore. J Phys Chem B 108(3):1102–1108

    CAS  Google Scholar 

  69. Voityuk AA, Michel-Beyerle M-E, Rosch N (1997) Protonation effects on the chromophore of green fluorescent protein. quantum chemical study of the absorption spectrum. Chem Phys Lett 272:162–167

    CAS  Google Scholar 

  70. Martin M, Negri F, Olivucci M (2004) Origin, nature, and fate of the fluorescent state of the green fluorescent protein chromophore at the CASPT2//CASSCF resolution. J Am Chem Soc 126(17):5452–5464

    CAS  Google Scholar 

  71. Nifosì R, Amat P, Tozzini V (2007) Variation of spectral, structural and vibrational properties within the intrinsically fluorescent proteins family: a density functional study. J Comput Chem 28:2366–2377

    Google Scholar 

  72. Yan W, Zhang L, Xie D, Zeng J (2007) Electronic excitations of green fluorescent proteins: modeling solvatochromatic shifts of red fluorescent protein chromophore model compound in aqueous solutions. J Phys Chem B 111(50):14055–14063

    CAS  Google Scholar 

  73. Olsen S, Smith SC (2008) Bond selection in the photoisomerization reaction of anionic green fluorescent protein and kindling fluorescent protein chromophore models. J Am Chem Soc 130(27):8677–8689

    CAS  Google Scholar 

  74. Epifanovsky E, Polyakov I, Grigorenko B, Nemukhin A, Krylov AI (2009) Quantum chemical benchmark studies of the electronic properties of the green fluorescent protein chromophore. 1. Electronically excited and ionized states of the anionic chromophore in the gas phase. J Chem Theory Comput 5(7):1895–1906

    CAS  Google Scholar 

  75. Ma Y, Rohlfing M, Molteni C (2010) Modeling the excited states of biological chromophores within many-body green’s function theory. J Chem Theory Comput 6(1):257–265

    CAS  Google Scholar 

  76. Kowalski K, Krishnamoorthy S, Villa O, Hammond JR, Govind N (2010) Active-space completely-renormalized equation-of-motion coupled-cluster formalism: excited-state studies of green fluorescent protein, free-base porphyrin, and oligoporphyrin dimer. J Chem Phys 132(15):154103

    Google Scholar 

  77. Xie D, Zeng J (2005) Electronic excitations of green fluorescent proteins: protonation states of chromophore model compound in solutions. J Comput Chem 26(14):1487–1496

    CAS  Google Scholar 

  78. Wan S, Liu S, Zhao G, Chen M, Han K, Sun M (2007) Photoabsorption of green and red fluorescent protein chromophore anions in vacuo. Biophys Chem 129(2–3):218–223

    CAS  Google Scholar 

  79. Olsen S, Smith SC (2007) Radiationless decay of red fluorescent protein chromophore models via twisted intramolecular charge-transfer states. J Am Chem Soc 129(7):2054–2065

    CAS  Google Scholar 

  80. Sanchez-Garcia E, Doerr M, Thiel W (2010) QM/MM study of the absorption spectra of DsRed.m1 chromophores. J Comput Chem 31(8):1603–1612

    CAS  Google Scholar 

  81. Toniolo A, Granucci G, Martinez TJ (2003) Conical intersections in solution: a QM/MM study using floating occupation semiempirical configuration interaction wave functions. J Phys Chem A 107:3822

    CAS  Google Scholar 

  82. Drobizhev M, Tillo S, Makarov NS, Hughes TE, Rebane A (2009) Color hues in red fluorescent proteins are due to internal quadratic stark effect. J Phys Chem B 113(39):12860–12864

    CAS  Google Scholar 

  83. Hasegawa J-Y, Ise T, Fujimoto KJ, Kikuchi A, Fukumura E, Miyawaki A, Shiro Y (2010) Excited states of fluorescent proteins, mKO and DsRed: chromophore–protein electrostatic interaction behind the color variations. J Phys Chem B 114(8):2971–2979

    CAS  Google Scholar 

  84. He X, Bell AF, Tonge PJ (2002) Synthesis and spectroscopic studies of model red fluorescent protein chromophores. Org Lett 4(9):1523–1526

    CAS  Google Scholar 

  85. Laino T, Nifosì R, Tozzini V (2004) Relationship between structure and optical properties in green fluorescent proteins: an ab initio study of the active site. Chem Phys 298:17–28

    CAS  Google Scholar 

  86. Malo GD, Wang M, Wu D, Stelling AL, Tonge PJ, Wachter RM (2008) Crystal structure and Raman studies of dsFP483, a cyan fluorescent protein from Discosoma striata. J Mol Biol 378(4):871–886

    Google Scholar 

  87. Henderson JN, Remington SJ (2005) Crystal structures and mutational analysis of amFP486, a cyan fluorescent protein from Anemonia majano. Proc Natl Acad Sci USA 102(36):12712–12717

    CAS  Google Scholar 

  88. Henderson JN, Ai H-W, Campbell RE, Remington SJ (2007) Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci USA 104(16):6672–6677

    CAS  Google Scholar 

  89. Ai H-W, Henderson JN, Remington SJ, Campbell RE (2006) Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem J 400(3):531–540

    CAS  Google Scholar 

  90. Wood TI, Barondeau DP, Hitomi C, Kassmann CJ, Tainer JA, Getzoff ED (2005) Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis. Biochemistry 44(49):16211–16220

    CAS  Google Scholar 

  91. Ai H-W, Campbell RE (2008) Teal fluorescent proteins: characterization of a reversibly photoswitchable variant. In: Proceedings of the SPIE – The International Society for Optical Engineering, pp 68680D1–7

    Google Scholar 

  92. Nakano H, Okumura R, Goto C, Yamane T (2002) In vitro combinatorial mutagenesis of the 65thand 222nd positions of the green fluorescent protein of Aequorea victoria. Biotechnol Bioprocess Eng 7:311–315

    CAS  Google Scholar 

  93. Delagrave S, Hawtin RE, Silva CM, Yang MM, Youvan DC (1995) Red-shifted excitation mutants of the green fluorescent protein. Biotechnology (N Y) 13(2):151–154

    CAS  Google Scholar 

  94. Labas Y, Gurskaya NG, Yanushevich YG, Fradkov AF, Lukyanov KA, Lukyanov SA, Matz MV (2002) Diversity and evolution of the green fluorescent protein family. Proc Natl Acad Sci USA 99:4256–4261

    CAS  Google Scholar 

  95. Nienhaus K, Renzi F, Vallone B, Wiedenmann J, Nienhaus GU (2006) Exploring chromophore-protein interactions in fluorescent protein cmFP512 from Cerianthus membranaceus: X-ray structure analysis and optical spectroscopy. Biochemistry 45(43):12942–12953

    CAS  Google Scholar 

  96. Suto K, Masuda H, Takenaka Y, Tsuji FI, Mizuno H (2009) Structural basis for red-shifted emission of a GFP-like protein from the marine copepod Chiridius poppei. Genes Cells 14(6):727–737

    CAS  Google Scholar 

  97. Kummer AD, Wiehler J, Rehaber H, Kompa C, Steipe B, Michel-Beyerle ME (2000) Effects of threonine 203 replacements on excited-state dynamics and fluorescence properties of the green fluorescent protein (GFP). J Phys Chem B 104:4791–4798

    CAS  Google Scholar 

  98. Nifosì R, Ferrari A, Arcangeli C, Tozzini V, Pellegrini V, Beltram F (2003) Photoreversible dark state in a tristable green fluorescent protein variant. J Phys Chem B 107:1679–1684

    Google Scholar 

  99. Stiel AC, Trowitzsch S, Weber G, Andresen M, Eggeling C, Hell SW, Jakobs S, Wahl MC (2007) 1.8 a bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J 402(1):35–42

    CAS  Google Scholar 

  100. Shinobu A, Palm GJ, Schierbeek AJ, Agmon N (2010) Visualizing proton antenna in a high-resolution green fluorescent protein structure. J Am Chem Soc 132:11093–11102

    CAS  Google Scholar 

  101. Habuchi S, Dedecker P, Ichi Hotta J, Flors C, Ando R, Mizuno H, Miyawaki A, Hofkens J (2006) Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. Photochem Photobiol Sci 5(6):567–576

    CAS  Google Scholar 

  102. Shu X, Kallio K, Shi X, Abbyad P, Kanchanawong P, Childs W, Boxer SG, Remington SJ (2007) Ultrafast excited-state dynamics in the green fluorescent protein variant S65T/H148D. 1. Mutagenesis and structural studies. Biochemistry 46(43):12005–12013

    CAS  Google Scholar 

  103. Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11984–11989

    CAS  Google Scholar 

  104. Shcherbo D, Murphy CS, Ermakova GV, Solovieva EA, Chepurnykh TV, Shcheglov AS, Verkhusha VV, Pletnev VZ, Hazelwood KL, Roche PM, Lukyanov S, Zaraisky AG, Davidson MW, Chudakov DM (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418(3):567–574

    CAS  Google Scholar 

  105. Tubbs JL, Tainer JA, Getzoff ED (2005) Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans–cis isomerization and acylimine formation in chromophore maturation. Biochemistry 44(29):9833–9840

    CAS  Google Scholar 

  106. Shu X, Wang L, Colip L, Kallio K, Remington SJ (2009) Unique interactions between the chromophore and glutamate 16 lead to far-red emission in a red fluorescent protein. Protein Sci 18(2):460–466

    CAS  Google Scholar 

  107. Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, Lukyanov KA, Bogdanova EA, Zaraisky AG, Lukyanov S, Chudakov DM (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4(9):741–746

    CAS  Google Scholar 

  108. Blab GA, Lommerse PHM, Cognet L, Harms GS, Schmidt T (2001) Two-photon excitation action cross-sections of the autofluorescent proteins. Chem Phys Lett 350:71–77

    CAS  Google Scholar 

  109. Heikal AA, Hess ST, Webb WW (2001) Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid–base specificity. Chem Phys 274:37–55

    CAS  Google Scholar 

  110. Marchant JS, Stutzmann GE, Leissring MA, LaFerla FM, Parker I (2001) Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and subcellular labeling. Nat Biotechnol 19:645–649

    CAS  Google Scholar 

  111. Tillo SE, Hughes TE, Makarov NS, Rebane A, Drobizhev M (2010) A new approach to dual-color two-photon microscopy with fluorescent proteins. BMC Biotechnol 10:6

    Google Scholar 

  112. Drobizhev M, Makarov NS, Hughes T, Rebane A (2007) Resonance enhancement of two-photon absorption in fluorescent proteins. J Phys Chem B 111(50):14051–14054

    CAS  Google Scholar 

  113. Nifosì R, Luo Y (2007) Predictions of novel two-photon absorption bands in fluorescent proteins. J Phys Chem B 111(50):14043–14050

    Google Scholar 

  114. Hosoi H, Yamaguchi S, Mizuno H, Miyawaki A, Tahara T (2008) Hidden electronic excited state of enhanced green fluorescent protein. J Phys Chem B 112(10):2761–2763

    CAS  Google Scholar 

  115. Cubitt AB, Woollenweber LA, Heim R (1999) Understanding structure-function relationships in the Aequorea Victoria Green Fluorescent Protein Method Cell Biol 58:19–30

    Google Scholar 

  116. Morise H, Shimomura O, Johnson FH, Winant J (1974) Intermolecular energy transfer in the bioluminescent system of Aequorea Biochemistry. American Chemical Society 13:2656–2662

    Google Scholar 

  117. Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB, Zorov DB, Lukyanov S, Lukyanov KA (2003) Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol 21:191–194

    Google Scholar 

  118. Yang TT, Sinai P, Green G, Kitts PA, Chen YT, Lybarger L, Chervenak R, Patterson GH, Piston DW, Kain SR (1998) Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein. J Biol Chem 273:8212–8216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nifosì .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nifosì, R., Tozzini, V. (2011). One-Photon and Two-Photon Excitation of Fluorescent Proteins. In: Jung, G. (eds) Fluorescent Proteins I. Springer Series on Fluorescence, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2011_26

Download citation

Publish with us

Policies and ethics