Skip to main content

Probing Structure and Dynamics of the Cell Membrane with Single Fluorescent Proteins

  • Chapter
  • First Online:
Fluorescent Proteins II

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 12))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  Google Scholar 

  2. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  Google Scholar 

  3. Simons K, van Meer G (1998) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  Google Scholar 

  4. Brown D, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  CAS  Google Scholar 

  5. Dietrich C, Volovyk Z, Levi M, Thompson N, Jacobson K (2001) Partitioning of thy-1, gm1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc Natl Acad Sci USA 98:10642–10647

    Article  CAS  Google Scholar 

  6. Dietrich C, Bagatolli L, Volovyk Z, Thompson N, Levi M, Jacobson K, Gratton E (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    Article  CAS  Google Scholar 

  7. Korlach J, Schwille P, Webb W, Feigenson G (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 96:8461–8466

    Article  CAS  Google Scholar 

  8. Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  CAS  Google Scholar 

  9. Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580

    Article  CAS  Google Scholar 

  10. Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membraneraft- based molecular interactions. Biochim Biophys Acta 1746:234–251

    Article  CAS  Google Scholar 

  11. Almeida PFF, Vaz WLC (1995) Lateral diffusion in membranes. In: Lipowsky R, Sackmann E (eds) Handbook of biological physics, vol 1. Elsevier/North Holland, Amsterdam, pp 305–357

    Google Scholar 

  12. Anderson CM, Georgiou GN, Morrison IEG, Stevenson GVW, Cherry RJ (1992) Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. J Cell Sci 101:415–425

    Google Scholar 

  13. Feder TJ, Brust-Mascher I, Slattery JP, Baird B, Webb WWW (1996) Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys J 70:2767–2773

    Article  CAS  Google Scholar 

  14. Kusumi A, Sako J, Yamamoto M (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65:2021–2040

    Article  CAS  Google Scholar 

  15. Wieser S, Moertelmaier M, Fuertbauer E, Stockinger H, Schutz GJ (2007) (Un)confined diffusion of CD59 in the plasma membrane determined by high-resolution single-molecule microscopy. Biophys J 92:3719–3728

    Article  CAS  Google Scholar 

  16. Schmidt T, Schutz GJ, Gruber HJ, Schindler H (1995) Characterization of photophysics and mobility of single molecules in a fluid lipid membrane. J Phys Chem 99:17662–17668

    Article  CAS  Google Scholar 

  17. Schmidt T, Schutz GJ, Baumgartner W, Gruber HJ, Schindler H (1996) Imaging of single molecule diffusion. Proc Natl Acad Sci USA 93:2926–2929

    Article  CAS  Google Scholar 

  18. Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aquous solution. Nature 374:555–559

    Article  CAS  Google Scholar 

  19. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Article  CAS  Google Scholar 

  20. Abraham AV, Ram S, Chao J, Ward ES, Ober RJ (2009) Quantitative study of single molecule location estimation techniques. Opt Exp 17:23352–23373

    Article  CAS  Google Scholar 

  21. Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional system. Biophys J 60:910–921

    Article  CAS  Google Scholar 

  22. Semrau S, Schmidt T (2007) Particle image correlation spectroscopy (PICS): retrieving nanometer-scale correlations from high-density single molecule position data. Biophys J 92:613–621

    Article  CAS  Google Scholar 

  23. Hebert B, Costantino S, Wiseman PW (2005) Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys J 88:3601–3614

    Article  CAS  Google Scholar 

  24. Lommerse PHM, Blab GA, Cognet L, Harms GS, Snaar-Jagalska EB, Spaink HP, Schmidt T (2004) Single-molecule imaging of lipid-anchored proteins reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys J 86:609–616

    Article  CAS  Google Scholar 

  25. Harms GS, Cognet L, Lommerse PHM, Blab GA, Schmidt T (2001) Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy. Biophys J 80:2396–2408

    Article  CAS  Google Scholar 

  26. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  Google Scholar 

  27. Zhang J, Campbell R, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Cell Biol 3:906–918

    Article  CAS  Google Scholar 

  28. Kapanidis AN, Weiss S (2002) Fluorescent probes and bioconjugation chemistries for single molecule fluorescence analysis of biomolecule. J Chem Phys 117:10953–10964

    Article  CAS  Google Scholar 

  29. Yin J, Lin AJ, Golan DE, Walsh CT (2006) Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat Protoc 1:280–285

    Article  CAS  Google Scholar 

  30. Zhou Z, Cironi P, Lin AJ, Xu Y, Hrvatin S, Golan DE, Silver PA, Walsh CT, Yin J (2007) Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem Biol 2:337–346

    Article  CAS  Google Scholar 

  31. Los G, Anson B, Zimprich C, Karassina N, January C, Buleit, RF (2004) The HaloTag: a novel technology for protein labeling in living cells: effect of the HaloTagTM system on hERG channel activity. FENS Forum 2004, Federation of European Neuroscience Societies (FENS), Berlin, 196

    Google Scholar 

  32. Kapanidis AN, Ebright YW, Ebright RH (2001) Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling using (Ni2+:Nitrilotriacetic acid)n-fluorochrome conjugates. J Am Chem Soc 123:12123–12125

    Article  CAS  Google Scholar 

  33. Cornish VW, Hahn KM, Schultz PG (1996) Site-specific protein modification using a ketone handle. J Am Chem Soc 118:8150–8151

    Article  CAS  Google Scholar 

  34. Wang L, Magliery TJ, Liu DR, Schultz PG (2000) A new functional suppressor tRNA/Aminoacyl-tRNA synthetase pair for the in vivo incorporation of unnatural amino acids into proteins. J Am Chem Soc 122:5010–5011

    Article  CAS  Google Scholar 

  35. Hancock JF, Paterson H, Marshall CJ (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63:133–139

    Article  CAS  Google Scholar 

  36. Hancock JF, Cadwallader K, Paterson H, Marshall CJ (1991) A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J 10:4033–4039

    CAS  Google Scholar 

  37. Choy E, Chiu VK, Silletti J, Feoktistov M, Morimoto T, Michaelson D, Ivanov IE, Philips MR (1999) Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98:69–80

    Article  CAS  Google Scholar 

  38. Apolloni A, Prior IA, Lindsay M, Parton RG, Hancock JF (2000) H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol Cell Biol 20:2475–2487

    Article  CAS  Google Scholar 

  39. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  40. Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E, Rolls B, Hancock JF, Parton RG (1999) Dominant-negative caveolin inhibits H-ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol 1:98–105

    Article  CAS  Google Scholar 

  41. Niv H, Gutman O, Kloog Y, Henis YI (2002) Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J Cell Biol 157:865–872

    Article  CAS  Google Scholar 

  42. Parmryd I, Adler J, Patel R, Magee AI (2003) Imaging metabolism of phosphatidylinositol 4,5-bisphosphate in T-cell GM1- enriched domains containing Ras proteins. Exp Cell Res 285:27–38

    Article  CAS  Google Scholar 

  43. Prior IA, Harding A, Yan J, Sluimer J, Parton RG, Hancock JF (2001) GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3:368–375

    Article  CAS  Google Scholar 

  44. Prior IA, Muncke C, Parton RG, Hancock JF (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160:165–170

    Article  CAS  Google Scholar 

  45. Abankwa D, Gorfe AA, Inder K, Hancock JF (2010) Ras membrane orientation and nanodomain localization generate isoform diversity. Proc Natl Acad Sci USA 107:1130–1135

    Article  CAS  Google Scholar 

  46. Lommerse PHM, Spaink HP, Schmidt T (2004) In vivo plasma membrane organization: results of biophysical approaches. Biochem et Biophys Acta 1664:119–131

    Article  CAS  Google Scholar 

  47. Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochem et Biophys Acta 1746:234–251

    Article  CAS  Google Scholar 

  48. Lommerse PH, Vastenhoud K, Pirinen NJ, Magee AI, Spaink HP, Schmidt T (2006) Single-molecule diffusion reveals similar mobility for the Lck, H-ras, and K-ras membrane anchors. Biophys J 91:1090–1097

    Article  CAS  Google Scholar 

  49. Lommerse PHM, Snaar-Jagalska EB, Spaink HP, Schmidt T (2005) Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. J Cell Sci 118:1799–1809

    Article  CAS  Google Scholar 

  50. Li SL, Miyata Y, Yahara I, Fujita-Yamaguchi Y (1993) Insulin- induced circular membrane ruffling on rat 1 cells expressing a high number of human insulin receptors: circular ruffles caused by rapid actin reorganization exhibit high density of insulin receptors and phosphotyrosines. Exp Cell Res 205:353–360

    Article  CAS  Google Scholar 

  51. Tsakiridis T, Bergman A, Somwar R, Taha C, Aktories K, Cruz TF, Klip A, Downey GP (1998) Actin filaments facilitate insulin activation of the src and collagen homologous/mitogen-activated protein kinase pathway leading to DNA synthesis and c-fos expression. J Biol Chem 273:28322–28331

    Article  CAS  Google Scholar 

  52. Khayat ZA, Tong P, Yaworsky K, Bloch RJ, Klip A (2000) Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. J Cell Sci 113:279–290

    CAS  Google Scholar 

  53. Dadke S, Chernoff J (2003) Protein-tyrosine phosphatase 1B mediates the effects of insulin on the actin cytoskeleton in immortalized fibroblasts. J Biol Chem 278:40607–40611

    Article  CAS  Google Scholar 

  54. Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C, Yoshimura A, Kusumi A (2004) Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci USA 101:7317–7322

    Article  CAS  Google Scholar 

  55. Rotblat B, Prior IA, Muncke C, Parton RG, Kloog Y, Henis YI, Hancock JF (2004) Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane. Mol Cell Biol 24:6799–6810

    Article  CAS  Google Scholar 

  56. Belanis L, Plowman SJ, Rotblat B, Hancock JF, Kloog Y (2008) Galectin-1 is a novel structural component and a major regulator of HRas nanoclusters. Mol Biol Cell 19:1404–1414

    Article  CAS  Google Scholar 

  57. Ries J, Yu SR, Burkhardt M, Brand M, Schwille P (2009) Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nat Methods 6:643–645

    Article  CAS  Google Scholar 

  58. Shi X, Foo YH, Sudhaharan T, Chong SW, Korzh V, Ahmed S, Wohland T (2009) Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. Biophys J 97:678–686

    Article  CAS  Google Scholar 

  59. Shi X, Teo LS, Pan X, Chong SW, Kraut R, Korzh V, Wohland T (2009) Probing events with single molecule sensitivity in zebrafish and Drosophila embryos by fluorescence correlation spectroscopy. Dev Dyn 238:3156–3167

    Article  CAS  Google Scholar 

  60. Friedrich M, Nozadze R, Gan Q, Zelman-Femiak M, Ermolayev V, Wagner TU, Harms GS (2009) Detection of single quantum dots in model organisms with sheet illumination microscopy. Biochem Biophys Res Commun 390:722–727

    Article  CAS  Google Scholar 

  61. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367

    Article  CAS  Google Scholar 

  62. Hsu CH, Wen ZH, Lin CS, Chakraborty C (2007) The zebrafish model: use in studying cellular mechanisms for a spectrum of clinical disease entities. Curr Neurovasc Res 4:111–120

    Article  CAS  Google Scholar 

  63. Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity 20:367–379

    Article  CAS  Google Scholar 

  64. Schaaf MJM, Koopmans WJA, Meckel T, van Noort J, Snaar-Jagalska EB, Schmidt T, Spaink HP (2009) Single-molecule microscopy reveals membrane microdomain organization of cells in a living vertebrate. Biophys J 97:1206–1214

    Article  CAS  Google Scholar 

  65. Eichinger L et al (2005) The genome of the social amoeba Dictyostelium disciodeum. Nature 435:43–57

    Article  CAS  Google Scholar 

  66. de Keijzer S, Sergé A, van Hemert F, Lommerse PHM, Lamers GEM, Spaink HP, Schmidt T, Snaar-Jagalska E (2008) A spatially restricted increase in receptor mobility is involved in directional sensing during Dictyostelium disciodeum chemotaxis. J Cell Sci 121:1750–1757

    Article  Google Scholar 

  67. van Hemert F, Lazova MD, Snaar-Jagalska E, Schmidt T (2010) Mobility of G proteins is heterogenous and polarized during chemotaxis. J Cell Sci 123:2922–2930

    Article  Google Scholar 

  68. Elzie CA, Colby J, Sammons MA, Janetopoulos C (2009) Dynamic localization of G proteins in Dictyostelium disciodeum. J Cell Sci 122:2597–2603

    Article  CAS  Google Scholar 

  69. Ueda M, Sako Y, Tanaka T, Devreotes P, Yanagida T (2001) Single molecule analysis of chemotactic signaling in Dictyostelium cells. Science 294:864–867

    Article  CAS  Google Scholar 

  70. Caterina MJ, Devreotes PN (1991) Molecular insights into eukaryotic chmotaxis. Faseb J 5:3078–3085

    CAS  Google Scholar 

  71. Devreotes P, Janetopoulos C (2003) Eukryotic chemotaxis: distinctions between directional sensing and polarization. J Biol Chem 278:20445–20448

    Article  CAS  Google Scholar 

  72. Rappel WJ, Thomas PJ, Levine H, Loomis WF (2002) Establishing direction during chemotaxis in eukaryotic cells. Biophys J 83:1361–1367

    Article  CAS  Google Scholar 

  73. Meinhardt H (1999) Orientation of chemotactic cells and growth cones: models and mechanisms. J Cell Sci 112:2867–2874

    CAS  Google Scholar 

  74. Narang A, Subramaniam KK, Lauffenburger DA (2001) A mathematical model for chemoattractant gradient sensing based on receptor-regulated membrane phospholipid signaling dynamics. Ann Biomed Eng 29:677–691

    Article  CAS  Google Scholar 

  75. Potsma M, van Haastert PJM (2001) A diffusion-translocation model for gradient sensing by chemotacic cells. Biophys J 81:1314–1323

    Article  Google Scholar 

  76. Ma L, Janetopoulos C, Yang L, Devreotes PN, Iglesias PA (2004) Two complementary, local excitation, global inhibition mechanisms acting in parallel can explain the chemoattractant-induced regulation of PI(3,4,5)P-3 response in Dictyostelium cells. Biophys J 87:3764–3774

    Article  CAS  Google Scholar 

  77. Gamba A, de Candia A, Talia S, Coniglio A, Bussolino F, Serini G (2005) Diffusion-limited phase separation in eukaryotic chemotaxis. Proc Natl Acad Sci USA 103:16927–16932

    Article  Google Scholar 

  78. Levine H, Kessler DA, Rappel WJ (2006) Directional sensing in eukaryotic chemotaxis: a balanced inactivation model. Proc Natl Acad Sci USA 103:9761–9766

    Article  CAS  Google Scholar 

  79. Andrew N, Insall RH (2007) Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusion. Nat Cell Biol 9:193–200

    Article  CAS  Google Scholar 

  80. Bosgraaf L, Haastert PJV (2009) Navigation of chemotactic cells by parallel signalling to pseudopod persistance and orientation. PLoS One 4:e6842

    Article  Google Scholar 

  81. Sasaki AT, Janetopoulos C, Lee S, Charest PG, Takeda K, Sundgeimer LW, Meili R, Devreotes PN, Firtel RA (2007) G protein-independent Ras/PI3K/F-actin circuit regulates basic cell motility. J Cell Biol 178:185–191

    Article  CAS  Google Scholar 

  82. Palczewski K et al (2000) Crystal structure of Rhodopsin: a G-protein coupled receptor. Science 289:739–745

    Article  CAS  Google Scholar 

  83. Rasmussen SGF et al (2007) Crystal structure of the human [bgr]2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  CAS  Google Scholar 

  84. Jaakola VP et al (2008) The 2.6 Angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    Article  CAS  Google Scholar 

  85. Nobles M, Benians A, Tinker A (2005) Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc Natl Acad Sci USA 102:18706–18711

    Article  CAS  Google Scholar 

  86. Parent CA, Devreotes PN (1999) A cell’s sense of direction. Science 284:765–770

    Article  CAS  Google Scholar 

  87. Jin T, Zhang N, Long Y, Parent CA, Devreotes PN (2000) Localization of the G proteinβγ complex in living cells during chemotaxis. Science 287:1034–1036

    Article  CAS  Google Scholar 

  88. Janetopoulos C, Jin T, Devreotes P (2001) Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 291:2408–2411

    Article  CAS  Google Scholar 

  89. Janssens PM, van Haastert PJ (1987) Molecular basis of transmembrane signal transduction in Dictyostelium Disciodeum. Microbiol Rev 51:396–418

    CAS  Google Scholar 

  90. Franca-Koh J, Kamimura Y, Devreotes P (2006) Navigating signaling networks: chemotaxis in Dictyostelium Disciodeum. Curr Opin Genet Dev 16:333–338

    Article  CAS  Google Scholar 

  91. Weisswange I, Bretschneider T, Anderson KI (2005) The leading egde is a lipid diffusion barrier. J Cell Sci 118:4375–4380

    Article  CAS  Google Scholar 

  92. Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–2080

    Article  CAS  Google Scholar 

  93. Schutz GJ, Schindler H, Schmidt T (1997) Single molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73:1073–1080

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pezzarossa, A., Fenz, S., Schmidt, T. (2011). Probing Structure and Dynamics of the Cell Membrane with Single Fluorescent Proteins. In: Jung, G. (eds) Fluorescent Proteins II. Springer Series on Fluorescence, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2011_24

Download citation

Publish with us

Policies and ethics