Skip to main content

Fluorescence Correlation Spectroscopic Studies of a Single Lipopolyamine–DNA Nanoparticle

  • Chapter
  • First Online:
Fluorescence of Supermolecules, Polymers, and Nanosystems

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 4))

Abstract

We have studied lipopolyamine–DNA complex formation by fluorescence correlation spectroscopy(FCS). Two lipopolyamines, N 4,N 9-dioleoylspermineand N 1-cholesteryl spermine carbamate, wereused to condense linear calf thymus DNA and two plasmid DNAs: pGL3 (5.3 kilobase pairs) and pEGFP(4.7 kilobase pairs). PicoGreen

® (PG), a high-affinity DNA intercalating agent that only fluoresceswhen intercalated, was used in our FCS study. In this study, the ConfoCor I set-up upgraded with TimeHarp 200was used. FCS directly visualizes the condensation process by tracking changes in diffusion coefficientsand particle numbers. We were able to define the fluorescent signalling behaviour of PG through the processfrom dye binding to dye release and then dye quenching. Dye release was suggested as the indicator forDNA conformational change, but not for nanoparticle formation. Dye quenching, through the observation oflifetime change, is a more important event accurately and sensitively reporting that a singlenanoparticle exists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloomfield VA (1991) Biopolymers 31:1471–1481

    Article  CAS  Google Scholar 

  2. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ (1995) J Biol Chem 270:18997–19007

    Article  CAS  Google Scholar 

  3. Bloomfield VA (1996) Curr Opin Struct Biol 6:334–341

    Article  CAS  Google Scholar 

  4. Bloomfield VA (1997) Biopolymers 44:269–282

    Article  CAS  Google Scholar 

  5. Godbey WT, Wu KK, Mikos AG (1999) Proc Natl Acad Sci USA 96:5177–5181

    Article  CAS  Google Scholar 

  6. Wiethoff CM, Middaugh CR (2003) J Pharm Sci 92:203–217

    Article  CAS  Google Scholar 

  7. Blagbrough IS, Geall AJ, Neal AP (2003) Biochem Soc Trans 31:397–406

    Article  CAS  Google Scholar 

  8. Thompson NL (1991) Fluorescence correlation spectroscopy. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy. Kluwer, New York, p 337

    Google Scholar 

  9. Eigen M, Rigler R (1994) Proc Natl Acad Sci USA 91:5740–5747

    Article  CAS  Google Scholar 

  10. Walter NG, Schwille P, Eigen M (1996) Proc Natl Acad Sci USA 93:12805–12810

    Article  CAS  Google Scholar 

  11. Welz C, Fahr A (2001) Appl Spectrosc Rev 36:333–397

    Article  CAS  Google Scholar 

  12. Rigler R, Elson ES (2001) Fluorescence correlation spectroscopy: theory and applications. Springer, Berlin

    Book  Google Scholar 

  13. Enderlein J (2004) Single molecule spectroscopy: basics and applications. In: Hof M, Hutterer R, Fidler V (eds) Fluorescence methods and applications: advanced methods and their applications to membranes, proteins, DNA, and cells. Springer, Berlin Heidelberg, pp 104–122

    Google Scholar 

  14. Brock R (2004) Fluorescence correlation spectroscopy in cell biology. In: Hof M, Hutterer R, Fidler V (eds) Fluorescence methods and applications: advanced methods and their applications to membranes, proteins, DNA, and cells. Springer, Berlin Heidelberg, pp 245–262

    Google Scholar 

  15. Geall AJ, Blagbrough IS (2000) J Pharm Biomed Anal 22:849–859

    Article  CAS  Google Scholar 

  16. Bjorling S, Kinjo M, Foldes-Papp Z, Hagman E, Thyberg P, Rigler R (1998) Biochemistry 37:12971–12978

    Article  CAS  Google Scholar 

  17. Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS (2000) J Biol Chem 275:1625–1629

    Article  CAS  Google Scholar 

  18. Benda A, Hof M, Wahl M, Patting M, Erdmann R, Kapusta P (2005) Rev Sci Instrum 76:033106

    Article  Google Scholar 

  19. Magde D, Webb WW, Elson E (1972) Phys Rev Lett 29:705

    Article  CAS  Google Scholar 

  20. Magde D, Elson EL, Webb WW (1974) Biopolymers 13:29–61

    Article  CAS  Google Scholar 

  21. Kral T, Langner M, Benes M, Baczynska D, Ugorski M, Hof M (2002) Biophys Chem 95:135–144

    Article  CAS  Google Scholar 

  22. Kral T, Hof M, Langner M (2002) Biol Chem 383:331–335

    Article  CAS  Google Scholar 

  23. Jurkiewicz P, Okruszek A, Hof M, Langner M (2003) Cell Mol Biol Lett 8:77–84

    CAS  Google Scholar 

  24. Kral T, Hof M, Jurkiewicz P, Langner M (2002) Cell Mol Biol Lett 7:203–211

    CAS  Google Scholar 

  25. Van Rompaey E, Engelborghs Y, Sanders N, De Smedt SC, Demeester J (2001) Pharm Res 18:928–936

    Article  Google Scholar 

  26. Sobell HM, Tsai CC, Jain SC, Gilbert SG (1977) J Mol Biol 114:333–365

    Article  CAS  Google Scholar 

  27. Manning GS (1978) Q Rev Biophys 11:179–246

    Article  CAS  Google Scholar 

  28. Nordmeier E (1992) J Phys Chem 96:6045–6055

    Article  CAS  Google Scholar 

  29. Singer VL, Jones LJ, Yue ST, Haugland RP (1997) Anal Biochem 249:228–238

    Article  CAS  Google Scholar 

  30. Millard PJ, Roth BL, Thi HPT, Yue ST, Haugland RP (1997) Appl Environ Microbiol 63:2897–2905

    CAS  Google Scholar 

  31. Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Nucleic Acids Res 32:e103

    Article  Google Scholar 

  32. Eriksson M, Karlsson HJ, Westman G, Akerman B (2003) Nucleic Acids Res 31:6235–6242

    Article  CAS  Google Scholar 

  33. Petty JT, Bordelon JA, Robertson ME (2000) J Phys Chem B 104:7221–7227

    Article  CAS  Google Scholar 

  34. Zipper H, Buta C, Lammle K, Brunner H, Bernhagen J, Vitzthum F (2003) Nucleic Acids Res 31:e39

    Article  Google Scholar 

  35. Yan X, Grace WK, Yoshida TM, Habbersett RC, Velappan N, Jett JH, Keller RA, Marrone BL (1999) Anal Chem 71:5470–5480

    Article  CAS  Google Scholar 

  36. Yan XM, Habbersett RC, Yoshida TM, Nolan JP, Jett JH, Marrone BL (2005) Anal Chem 77:3554–3562

    Article  CAS  Google Scholar 

  37. Beach L, Schweitzer C, Scaiano JC (2003) Org Biomol Chem 1:450–451

    Article  CAS  Google Scholar 

  38. Schweitzer C, Scaiano JC (2003) Phys Chem Chem Phys 5:4911–4917

    Article  CAS  Google Scholar 

  39. Tsai JT, Furstoss KJ, Michnick T, Sloane DL, Paul RW (2002) Biotechnol Appl Biochem 36:13–20

    Article  CAS  Google Scholar 

  40. Choi JS, Nam K, Park J, Kim JB, Lee JK, Park J (2004) J Control Release 99:445–456

    Article  CAS  Google Scholar 

  41. Kasper FK, Seidlits SK, Tang A, Crowther RS, Carney DH, Barry MA, Mikos AG (2005) J Control Release 104:521–539

    Article  CAS  Google Scholar 

  42. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K (2005) J Am Chem Soc 127:4388–4396

    Article  CAS  Google Scholar 

  43. Kral T, Widerak K, Langner M, Hof M (2005) J Fluoresc 15:179–183

    Article  CAS  Google Scholar 

  44. Lumma D, Keller S, Vilgis T, Radler JO (2003) Phys Rev Lett 90:218301(1)–218301(2)

    Google Scholar 

  45. Kleideiter G, Nordmeier E (1999) Polymer 40:4025–4033

    Article  CAS  Google Scholar 

  46. Yoshikawa K, Yoshikawa Y, Kanbe T (2002) Chem Phys Lett 354:354–359

    Article  CAS  Google Scholar 

  47. McLaggan D, Adjimatera N, Blagbrough IS, Sepčić K, Jaspars M, MacEwan DJ, Scott RH (2006) BMC Biotechnol 6:6

    Article  Google Scholar 

  48. Ahmed OAA, Pourzand C, Blagbrough IS (2006) Pharm Res 23:31–40

    Article  CAS  Google Scholar 

  49. Adjimatera N, Neal AP, Blagbrough IS (2004) Fluorescence techniques in non-viral gene therapy. In: Hof M, Hutterer R, Fidler V (eds) Fluorescence methods and applications: advanced methods and their applications to membranes, proteins, DNA, and cells. Springer, Berlin Heidelberg, pp 201–228

    Google Scholar 

  50. Ahmed OAA, Adjimatera N, Pourzand C, Blagbrough IS (2005) Pharm Res 22:972–80

    Article  CAS  Google Scholar 

  51. Blagbrough IS, Adjimatera N, Ahmed OAA, Neal AP, Pourzand C (2004) Spermine and lipopolyamines as gene delivery agent. In: Beadle DJ, Mellor IR, Usherwood PNR (eds) Neurotox'03: neurotoxicological targets from functional genomics and proteomics. Society of Chemical Industry, London, pp 147–159

    Google Scholar 

  52. Geall AJ, Taylor RJ, Earll ME, Eaton MAW, Blagbrough IS (2000) Bioconjug Chem 11:314–326

    Article  CAS  Google Scholar 

  53. Cosa G, Focsaneanu KS, McLean JRN, McNamee JP, Scaiano JC (2001) Photochem Photobiol 73:585–599

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Kral .

Editor information

M. N. Berberan-Santos

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adjimatera, N., Benda, A., Blagbrough, I.S., Langner, M., Hof, M., Kral, T. (2007). Fluorescence Correlation Spectroscopic Studies of a Single Lipopolyamine–DNA Nanoparticle. In: Berberan-Santos, M.N. (eds) Fluorescence of Supermolecules, Polymers, and Nanosystems. Springer Series on Fluorescence, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2007_014

Download citation

Publish with us

Policies and ethics