Skip to main content

Organizational Dynamics, Functions, and Pathobiological Dysfunctions of Neurofilaments

  • Chapter
  • First Online:
Cell Biology of the Axon

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 48))

Abstract

Neurofilament phosphorylation has long been considered to regulate their axonal transport rate, and in doing so it provides stability to mature axons. We evaluate the collective evidence to date regarding how neurofilament C-terminal phosphorylation may regulate axonal transport. We present a few suggestions for further experimentation in this area, and expand upon previous models for axonal NF dynamics. We present evidence that the NFs that display extended residence along axons are critically dependent upon the surrounding microtubules, and that simultaneous interaction with multiple microtubule motors provides the architectural force that regulates their distribution. Finally, we address how C-terminal phosphorylation is regionally and temporally regulated by a balance of kinase and phosphatase activities, and how misregulation of this balance might contribute to motor neuron disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerley S, Thornhill P, Grierson AJ, Brownlees J, Anderton BH, Leigh PN, Shaw CE, Miller CJ (2003) Neurofilament heavy chain side-arm phosphorylation regulates axonal transport of neurofilaments. J Cell Biol 161:489–495

    Article  PubMed  CAS  Google Scholar 

  • Ackerley S, Grierson AJ, Banner S, Perkinton MS, Brownlees J, Byers HL, Ward M, Thornhill P, Hussain K, Waby JS, Anderton BH, Cooper JD, Dingwall C, Leigh PN, Shaw CE, Miller CC (2004) p38alpha stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis. Mol Cell Neurosci 26:354–364

    Article  PubMed  CAS  Google Scholar 

  • Ahmad FJ, Hughey J, Wittmann T, Hyman A, Greaser M, Baas PW (2000) Motor proteins regulate force interactions between microtubules and microfilaments in the axon. Nat Cell Biol 2:276–280

    Article  PubMed  CAS  Google Scholar 

  • Archer DR, Watson DF, Griffin JW (1994) Phosphorylation-dependent immunoreactivity of neurofilaments and the rate of slow axonal transport in the central and peripheral axons of the rat dorsal root ganglion. J Neurochem 62:1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Chan W K-H, Yabe JT, Pimenta AF and Shea TB (2002) Growth cones contain a highly-dynamic population of neurofilament subunits. Cell Motil Cytoskel 54:195–207

    Article  Google Scholar 

  • Baas PW, Nada CV, Myers KA (2006) Axonal transport of microtubules: the long and short of it. Traffic 7:490–498

    Article  PubMed  CAS  Google Scholar 

  • Bajaj NPS, Al-Sarraj ST, Leigh PN, Anderson V, Miller CCJ (1999) Cyclin dependent kinase 5 (cdk5) phosphorylates neurofilament heavy (NF-H) chain to generate epitopes for antibodies that label neurofilament accumulations in amyotrophic lateral sclerosis (ALS) and is present in affected motor neurons in ALS. Neuro Psychopharm Biol Psychiatr 23:833–850

    Article  CAS  Google Scholar 

  • Black MM, Lee VM-Y (1988) Phosphorylation of neurofilament proteins in intact neurons: demonstration of phosphorylation in cell bodies and axons. J Neurosci 8:3296–3305

    PubMed  CAS  Google Scholar 

  • Blum JJ, Reed MC (1989) A model for slow axonal transport and its application to neurofilamentous neuropathies. Cell Motil Cytoskel 12:53–65

    Article  CAS  Google Scholar 

  • Brown A (1998) Continguous phosphorylated and non-phosphorylated domains along axonal neurofilaments. J Cell Sci 111:455–467

    PubMed  CAS  Google Scholar 

  • Brown A, Wang L, Jung P (2005) Stochastic simulation of neurofilament transport in axons: the “stop-and-go” hypothesis. Mol Biol Cell 16:4243–4255

    Article  PubMed  CAS  Google Scholar 

  • Chan WK-C, Dickerson A, Otriz D, Pimenta A, Moran C, Malik K, Motil J, Snyder S, Pant HC, Shea TB (2004) Mitogen activated protein kinase regulates neurofilament axonal transport. J Cell Sci 117:4629–4642

    Article  PubMed  CAS  Google Scholar 

  • Chan WK-H, Yabe JT, Pimenta AF, Ortiz D, Shea TB (2005) Neurofilaments can undergo transport and cytoskeletal incorporation in a discontinuous manner Cell Motil Cytoskel 62:166–179

    Article  CAS  Google Scholar 

  • Chan WK-H, Kushkuley J, Leterrrier J-F, Eyer J, Shea TB (2007) Calcium-mediated “bridging” of phosphorylated neurofilaments (NFs) promotes NF-NF association and inhibits NF-microtubule association: a mechanism for selective slowing of axonal transport of phospho-NFs. Mol Biol Cell 18 (Suppl) 2349

    Google Scholar 

  • Collard JF, Côté F, Julien JP (1995) Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375:61–64

    Article  PubMed  CAS  Google Scholar 

  • Craciun G, Brown A, Friedman A (2005) A dynamical system model of neurofilament transport in axons. J Theor Biol 237:316–322

    Article  PubMed  Google Scholar 

  • DeFuria J, Chen P, Shea TB (2006) Divergent effects of the MEKK-1/JNK pathway on NB2a/d1 differentiation: some activity is required for neurite outgrowth and maturation but overactivation inhibits both phenomena. Brain Res 1123:20–26

    Article  PubMed  CAS  Google Scholar 

  • De Vos KJ, Grierson AJ, Ackerley S, Miller CC (2008) Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 31:151–173

    Article  PubMed  Google Scholar 

  • DeWaegh SM, Lee VM, Brady ST (1992) Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68:451–463

    Article  CAS  Google Scholar 

  • Dubey M, Chaudhury P, Kabiru H, Shea TB (2007) Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: neurofilaments attenuate tau-mediated neurite stability. Cell Motil Cytoskel 65:89–99

    Article  Google Scholar 

  • Gou JP, Gotow T, Janmey PA, Leterrier JF (1998) Regulation of neurofilament interactions in vitro by natural and synthetic polypeptides sharing Lys-Ser-Pro sequences with the heavy neurofilament subunit NF-H: neurofilament crossbridging by antiparallel sidearm overlapping. Med Biol Eng Comput 36:371–387

    Article  PubMed  CAS  Google Scholar 

  • He Y, Francis F, Myers KA, Yu W, Black MM, Baas PW (2005) Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments. J Cell Biol 168:697–703

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PN, Lasek RJ, Griffin JW, Price DL (1983) Slowing of the axonal transport of neurofilament protein during development. J Neurosci 3:1694–1700

    PubMed  CAS  Google Scholar 

  • Julien J-P, Mushynski WE (1998) Neurofilaments in health and disease. Prog Nuc Acid Res Mol Biol 61:1–20

    Article  CAS  Google Scholar 

  • Jung C, Shea TB (1999) Regulation of neurofilament axonal transport by phosphorylation in optic axons in situ. Cell Motil Cytoskel 43:230–240

    Article  Google Scholar 

  • Jung C, Lee S, Ortiz D, Zhu Q, Julien J-P, Shea TB (2006) Phosphorylation of the high molecular weight neurofilament subunit regulates the association of neurofilaments with kinesin in situ. Brain Res 141:151–155

    Google Scholar 

  • Jung C, Yabe JT, Shea TB (2000a) Hypophosphorylated neurofilament subunits undergo axonal transport more rapidly than more extenisvely phosphorylated subunits in situ. Cell Motil Cytoskel 47:120–129

    Article  CAS  Google Scholar 

  • Jung C, Yabe JT, Shea TB (2000b) C-terminal phosphorylation of the heavy molecular weight neurofilament subunit is inversely correlated with neurofilament axonal transport velocity. Brain Res 856:12–19

    Article  CAS  Google Scholar 

  • Jung CJ, Shea TB (2004) Neurofilament subunits undergo more rapid translocation within retinas than in optic axons. Mol Brain Res 122:188–192

    Article  PubMed  CAS  Google Scholar 

  • Jung C, Chylinski TM, Pimenta A, Ortiz D, Shea TB. (2004) Neurofilament transport is dependent on actin and myosin. J Neurosci. 24:9486–9496

    Article  PubMed  CAS  Google Scholar 

  • Koehnle TJ, Brown A (1999) Slow axonal transport of neurofilament protein in cultured neurons. J Cell Biol 144:447–458

    Article  PubMed  CAS  Google Scholar 

  • Komiya Y, Cooper NA, Kidman AD (1987) The recovery of slow axonal transport after a single intraperitoneal injection of beta, beta'-iminodipropionitrile in the rat. J Biochem (Tokyo) 102:869–873

    CAS  Google Scholar 

  • Lasek RJ, Paggi P, Katz MJ (1992) Slow axonal transport mechanisms move neurofilaments relentlessly in mouse optic axons. J Cell Biol 117:607–616

    Article  PubMed  CAS  Google Scholar 

  • Lasek RJ, Paggi P, Katz MJ (1993) The maximum rate of neurofilament transport in axons: a view of molecular transport mechanisms continuously engaged. Brain Res 616:58–64

    Article  PubMed  CAS  Google Scholar 

  • Leterrier JF, Rusakov DA, Nelson BD, Linden M (1994) Interactions between brain mitochondria and cytoskeleton: evidence for specialized outer membrane domains involved in the association of cytoskeleton-associated proteins to mitochondria in situ and in vitro. Microsc Res Tech 27:233–261

    Article  PubMed  CAS  Google Scholar 

  • Lewis SE, Nixon RA (1988) Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments. J Cell Biol 107:2689–2701

    Article  PubMed  CAS  Google Scholar 

  • Lobsiger CS, Garcia ML, Ward CM, Cleveland DW (2005) Altered axonal architecture by removal of the heavily phosphorylated neurofilament tail domains strongly slows superoxide dismutase 1 mutant-mediated ALS. Proc Natl Acad Sci USA 102:10351–10356

    Article  PubMed  CAS  Google Scholar 

  • Martin M, Iyadurai SJ, Gassman A, Gindhart JG Jr, Hays TS, Saxton WM (1999) Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. Mol Biol Cell 10:3717–3728

    PubMed  CAS  Google Scholar 

  • Marszalek JR, Williamson TL, Lee MK, Xu ZS, Hoffman PN, Becher MW, Crawford TO, Cleveland DW (1996) Neurofilament subunit NF-H modulates axonal diameter by selectively slowing neurofilament transport. J Cell Biol 135:711–724

    Article  PubMed  CAS  Google Scholar 

  • Motil J, Chan W K-H, Dubey M, Chaudhury P, Pimenta A, Chylinski TM, Ortiz DT, Shea TB (2006a) Dynein mediates retrograde neurofilament transport within axonal neurites and anterograde delivery of NFs from perikarya into axons: regulation by multiple phosphorylation events. Cell Motil Cytoskel 63:266–286

    Article  CAS  Google Scholar 

  • Motil J, Dubey M, Chan W K-H, Shea TB (2006b) Inhibition of dynein but not kinesin induces focal accumulation of neurofilaments in axonal neurites. Brain Res 1164:125–131

    Article  Google Scholar 

  • Nixon RA (1993) The regulation of neurofilament protein dynamics by phosphorylation: clues to neurofibrillary pathology. Brain Pathol 3:29–38

    Article  PubMed  CAS  Google Scholar 

  • Nixon RA (1998) The slow transport of cytoskeletal proteins. Curr Opin Cell Biol 10:87–92

    Article  PubMed  CAS  Google Scholar 

  • Nixon RA, Logvinenko KB (1986) Multiple fates of newly synthesized neurofilament proteins: evidence for a stationary neurofilament network distributed non-uniformly along axons of retinal ganglion cell neurons. J Cell Biol 102:647–659

    Article  PubMed  CAS  Google Scholar 

  • Pant HC, Veeranna (1995) Neurofilament phosphorylation. Biochem Cell Biol 73:575–592

    Article  PubMed  CAS  Google Scholar 

  • Prahlad V, Helfand BT, Langford GM, Vale RD, Goldman RD (2000) Fast transport of neurofilament protein along microtubules in squid axoplasm. J Cell Sci 113:3939–3946

    PubMed  CAS  Google Scholar 

  • Rao M, Nixon RA (2003) Defective neurofilament transport in mouse models of amyotrophic lateral sclerosis: a review. Neurochem Res 28:1041–1047

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Campbell J, Yuan A, Kumar A, Gotow T, Uchiyama Y, Nixon RA (2003) The neurofilament middle molecular mass subunit carboxyl-terminal tail domain is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate. J Cell Biol 163:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Garcia ML, Miyazaki Y, Gotow T, Yuan A, Mattina S, Ward CM, Calcutt NA, Uchiyama Y, Nixon RA, Cleveland DW (2002) Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. J Cell Biol 158:681–693

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Coffee P, Smith G, Liem RKH, Brady ST, Black MM (2000) Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. J Neurosci 20:6849–6861

    PubMed  CAS  Google Scholar 

  • Sanchez I, Hassinger L, Sihag RK, Cleveland DW, Mohan P, Nixon RA (2000) Local control of neurofilament accumulation during radial growth of myelinating axons in vivo: selective role of site-specific phosphorylation. J Cell Biol 151:1013–1024

    Article  PubMed  CAS  Google Scholar 

  • Shah JV, Flanagan LA, Janmey PA, Leterrier J-F (2000) Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol Biol Cell 11:3495–3508

    PubMed  CAS  Google Scholar 

  • Shea TB, Beaty WJ (2007) Traffic jams: models for neurofilament accumulation in motor neuron disease. Traffic 8:445–447

    Article  PubMed  CAS  Google Scholar 

  • Shea TB, Chan W K-H (2008) Regulation of neurofilament dynamics by phosphorylation. Eur J Neurosci 27:1893–1901

    Article  PubMed  Google Scholar 

  • Shea TB, Flanagan L (2001) Kinesin, dynein and neurofilament transport Trends Neurosci 24:644–648

    CAS  Google Scholar 

  • Shea TB, Yabe JT (2000) Occam's razor slices through the mysteries of neurofilament axonal transport: can it really be so simple? Traffic 1:522–523

    Article  PubMed  CAS  Google Scholar 

  • Shea TB, Fischer I, Paskevich PA, Beermann ML (1993) The protein phosphatase inhibitor okadaic acid increases axonal NFs and neurite caliber, and decreases axonal MTs in NB2a/d1 cells. J Neurosci Res 35:507–521

    Article  PubMed  CAS  Google Scholar 

  • Shea TB, Wheeler E, Jung C (1997) Aluminum inhibits neurofilament assembly, cytoskeletal incoporation and axonal transport: dynamic nature of aluminum-induced perikaryal neurofilament accumulations as revealed by subunit turnover. Mol Chem Neuropathol 32:17–39

    Article  PubMed  CAS  Google Scholar 

  • Shea TB, Jung CJ, Pant HC (2003) Does C-terminal phosphorylation regulate neurofilament transport? Re-evaluation of recent data suggests that it does. Trends Neurosci 26:397–400

    Article  PubMed  CAS  Google Scholar 

  • Shea TB, Yabe JT, Ortiz D, Pimenta A, Loomis P, Goldman RD, Amin N, Pant HC (2004) CDK5 regulates axonal transport and phosphorylation of neurofilaments in cultured neurons. J Cell Sci 117:933–941

    Article  PubMed  CAS  Google Scholar 

  • Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC (2007) Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 313:2098–2109

    Article  PubMed  CAS  Google Scholar 

  • Strong MJ, Strong WL, Jaffe H, Traggert B, Sopper MM, Pant HC (2001) Phosphorylation state of the native high-molecular-weight neurofilament subunit protein from cervical spinal cord in sporadic amyotrophic lateral sclerosis. J Neurochem 76:1315–1325

    Article  PubMed  CAS  Google Scholar 

  • Theiss C, Napirei M, Karl-Meller K (2005) Impairment of anterograde and retrograde neurofilament transport after anti-kinesin and anti-dynein antibody microinjection in chicken dorsal root ganglia. Eur J Cell Biol 84:29–43

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima I, Kato K, Sugawara M, Wada C, Masamune O (1998a) Kinesin accumulation in chick spinal axonal swellings with beta,beta'-iminodipropionitrile (IDPN) intoxication. Neurosci Lett 249:103–106

    Article  CAS  Google Scholar 

  • Toyoshima I, Sugawara M, Kato K, Wada C, Hirota K, Hasegawa K, Kowa H, Sheetz MP, Masamune O (1998b) Kinesin and cytoplasmic dynein in spinal spheroids with motor neuron disease. J Neurol Sci 159:38–44

    Article  CAS  Google Scholar 

  • Trivedi N, Jung P, Brown A (2007) Neurofilaments switch between distinct mobile and stationary states during their transport along axons. J Neurosci 27:507–516

    Article  PubMed  CAS  Google Scholar 

  • Tu P-H, Elder G, Lazzarini RA, Nelson D, Trojanowski JQ, Lee VM-Y (1995) Overexpression of the human NFM subunit in transgenic mice modifies the level of endogenous NFL and the phosphorylation state of NFH subunits. J Cell Biol 129:1629–1640

    Article  PubMed  CAS  Google Scholar 

  • Wagner OI, Lifshitz J, Janmey PA, Linden M, McIntosh TK, Leterrier JF (2003) Mechanisms of mitochondria-neurofilament interactions. J Neurosci 23:9046–9058

    PubMed  CAS  Google Scholar 

  • Wang L, Ho C-I, Sun D, Liem RKH, Brown A (2000) Rapid movements of axonal neurofilaments interrupted by prolonged pauses. Nature Cell Biol 2:137–141

    Article  PubMed  CAS  Google Scholar 

  • Watson DF, Glass JD, Griffin JW (1993) Redistribution of cytoskeletal proteins in mammalian axons disconnected from their cell bodies. J Neurosci 13:4354–4360

    PubMed  CAS  Google Scholar 

  • Xia CH, Roberts EA, Her LS, Liu X, Williams DS, Cleveland DW, Goldstein LS (2003) Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J Cell Biol 161:55–66

    Article  PubMed  CAS  Google Scholar 

  • Yabe JT, Chan W, Shea TB (2000) Phospho-dependent association of neurofilament proteins with kinesin in situ. Cell Motil Cytoskel 42:230–240

    Google Scholar 

  • Yabe JT, Chylinski T, Wang F-S, Pimenta A, Kattar SD, Linsley M-D, Chan W K-H, Shea TB (2001a) Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, bundling and axonal transport rate in growing axonal neurites. J Neurosci 21:2195–2205

    CAS  Google Scholar 

  • Yabe JT, Pimenta A, Shea TB (1999) Kinesin-mediated transport of neurofilament protein oligomers in growing axons. J Cell Sci 112:3799–3814

    PubMed  CAS  Google Scholar 

  • Yabe JT, Wang F-S, Chylinski T, Katchmar T, Shea TB (2001b) Selective accumulation of the high molecular weight neurofilament subunit within the distal region of growing axonal neurites. Cell Motil Cytoskel 50:1–12

    Article  CAS  Google Scholar 

  • Yuan A, Nixon RA, Rao MV (2006a) Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo. Neurosci Lett 393:264–268

    Article  CAS  Google Scholar 

  • Yuan A, Rao MV, Sasaki T, Chen Y, Kumar A, Veeranna, Liem RK, Eyer J, Peterson AC, Julien JP, Nixon RA (2006b) Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci 26:10006–10019

    Article  CAS  Google Scholar 

  • Zhang B, Tu P, Abtahian F, Trojanowski JQ, Lee VM-Y (1997) Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J Cell Biol 139:1307–1315

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q, Lindenbaum M, Levavasseur F, Jacomy H, Julien J-P (1998) Disruption of the NF-H gene increases axonal microtubule content and velocity of neurofilament transport: Relief of axonopathy resulting from the toxin b'b'-iminodiproprionitrile. J Cell Biol 143:183–193

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This review was supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas B. Shea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shea, T.B., Chan, W.KH., Kushkuley, J., Lee, S. (2009). Organizational Dynamics, Functions, and Pathobiological Dysfunctions of Neurofilaments. In: Koenig, E. (eds) Cell Biology of the Axon. Results and Problems in Cell Differentiation, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2009_8

Download citation

Publish with us

Policies and ethics