Skip to main content

Heterosegmental SCPs (HSPs)

  • Chapter
Evoked Spinal Cord Potentials
  • 962 Accesses

Abstract

The bottom traces of Fig. 4.1A show the specimen records from the posterior epidural space (PES) of the lumbar enlargement in response to median nerve stimulation at the wrist in a wakeful subject. Any potentials were hardly noticeable in the lumbar enlargement. Thus, peripheral nerve stimulation at a distal site in the upper extremity can hardly evoke any potential change in the caudal segments of the spinal cord in a normal human. This, however, does not mean that peripheral nerve stimulation at a distal site in the upper extremity can hardly evoke any potential change in the caudal segments of the upper extremity or has no influence on spinal function in the lumbar enlargement. It is rather more likely that the electrical activity does exist but is barely demonstrated due to the temporal and spatial dispersion of the potential when the distal site of a peripheral nerve is stimulated. Therefore, it is predicted that when a more rostral site on the peripheral nerve is stimulated, a potential deflection could be more clearly demonstrated in the lumbosacral enlargement in humans, similar to that observed in the rat (Shimoji et al., 1986a,b,c).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Section B: Chapter 4

  • Andersen P, Eccles JC, Sears TA. Presynaptic inhibitory action of cerebral cortex on the spinal cord. Nature 1962;194:740–1.

    Article  PubMed  CAS  Google Scholar 

  • Basbaum AI, Ralston DD, Ralston HJ III. Bulbospinal projections in the primate: a light and electron microscopic study of a pain modulating system. J Comp Neurol 1986;250:311–23.

    Article  PubMed  CAS  Google Scholar 

  • Besson JM, Rivot JP. Heterosegmental, heterosensory and cortical inhibitory effects on dorsal interneurones in the cat’s spinal cord. Electroencephalogr Clin Neurophysiol 1972;33:195–206.

    Article  PubMed  CAS  Google Scholar 

  • Besson JM, Guilbaud G, Le Bars D. Descending inhibitory influences exerted by the brain stem upon the activities of dorsal horn lamina V cells induced by intra-arterial injection of bradykinin into the limb. J Physiol (Lond) 1975;248:725–39.

    CAS  Google Scholar 

  • Carpenter D, Engberg I, Lundberg A. Primary afferent depolarization evoked from the brain stem and the cerebellum. Arch Ital Biol 1966;104:73–85.

    PubMed  CAS  Google Scholar 

  • Denda S, Shimoji K, Tomita M, Baba H, Yamakura T, Masaki H, Endoh H, Fukuda, S. Central nuclei and spinal pathways in feedback inhibitory spinal cord potentials in ketamineanaesthetized rats. Br J Anaesth 1996;76:258–65.

    PubMed  CAS  Google Scholar 

  • Fung SJ, Barnes CD. Locus coeruleus control of spinal cord activity. In: Barnes CD, editor. Brainstem control of spinal cord function. Orlando: Academic Press; 1984. p. 215–55.

    Google Scholar 

  • Gebhart GF. Descending modulation of pain (Review). Neurosci Biobehav Rev 2004;27:729–37.

    Article  PubMed  CAS  Google Scholar 

  • Mokha SS, McMillan JA, Iggo A. Pathways mediating descending control of spinal nociceptive transmission from the nuclei locus coeruleus (LC) and raphe magnus (NRM) in the cat. Exp Brain Res 1986;61:597–606.

    Article  PubMed  CAS  Google Scholar 

  • Morton CR, Maisch B, Zimmermann M. Diffuse noxious inhibitory controls of lumbar spinal neurons involve a supraspinal loop in the cat. Brain Res 1987;410:347–52.

    Article  PubMed  CAS  Google Scholar 

  • Rudomín P, Solodkin M, Jiménez I. Synaptic potentials of primary afferent fibers and motoneurons evoked by single intermediate nucleus interneurons in the cat spinal cord. J Neurophysiol 1987;57:1288–313.

    PubMed  Google Scholar 

  • Saadé NE, Tabet MS, Banna NR, Atweh SF, Jabbur SJ. Inhibition of nociceptive evoked activity in spinal neurons through a dorsal column-brain stem-spinal loop. Brain Res 1985;339:115–8.

    Article  PubMed  Google Scholar 

  • Shimizu H, Shimoji K, Maruyama Y, Matsuki M, Kuribayashi H, Fujioka H. Human spinal cord potentials produced in lumbo-sacral enlargement by descending volleys. J Neurophysiol 1982;48:1108–20.

    PubMed  CAS  Google Scholar 

  • Shimoji K, Ito Y, Ohama K, Sawa T, Ikezono E. Presynaptic inhibition in man during anesthesia and sleep. Anesthesiology 1975;43:388–91.

    PubMed  CAS  Google Scholar 

  • Shimoji K, Matsuki M, Ito Y, Masuko K, Maruyama M, Iwane T, Aida S. Interactions of human cord dorsum potential. J Appl Physiol 1976;40:79–84.

    PubMed  CAS  Google Scholar 

  • Shimoji K, Matsuki M, Shimizu H. Wave-form characteristics and spatial distribution of evoked spinal electrogram in man. J Neurosurg 1977;46:304–13.

    PubMed  CAS  Google Scholar 

  • Shimoji K. Human spinal cord potentials (SCPs). Ascending recording variations-an update. In: Ducker TB, Brown RH, editors. Neurophysiology and standards of spinal cord monitoring. New York: Springer; 1986a. p. 19–28.

    Google Scholar 

  • Shimoji K, Fujioka H, Maruyama Y, Hokari T, Takada T. Spinal cord potentials (SCPs) produced by descending volleys in the rat. In: Ducker TB, Brown RH, editors. Neurophysiology and standards of spinal cord monitoring, New York: Springer; 1986b. p. 73–81.

    Google Scholar 

  • Shimoji K, Fujioka H, Maruyama Y, Shimizu H, Hokari T, Takada T. Spinal cord potentials (SCPs) produced by descending volleys in man. In: Ducker TB, Brown RH, editors. Neurophysiology and standards of spinal cord monitoring. New York: Springer; 1986c. p. 114–21.

    Google Scholar 

  • Shimoji K, Fujiwara N, Fukuda S, Denda S, Takada T, Maruyama Y. Effects of isoflurane on spinal inhibitory potentials. Anesthesiology 1990;72:851–7.

    Article  PubMed  CAS  Google Scholar 

  • Shimoji K, Sato Y, Denda S, Takada T, Fukuda S, Hokari T. Slow positive dorsal cord potentials activated by heterosegmental stimuli. Electroencephalogr Clin Neurophysiol 1992a;85:72–80.

    Article  PubMed  CAS  Google Scholar 

  • Shimoji K, Fujiwara N, Denda S, Tomita M, Toyama M, Fukuda S. Effects of pentobarbital on heterosegmentally activated dorsal root depolarization in the rat: investigation by sucrosegap technique in vivo. Anesthesiology 1992b;76:958–66.

    Article  PubMed  CAS  Google Scholar 

  • Shimoji K, Tomita M, Tobita T, Baba H, Takada T, Fukuda S, Aida S, Fujiwara N. Erb’s point stimulation produces slow positive potentials in human lumbar spinal cord. J Clin Neurophysiol 1994;11:365–74.

    Article  PubMed  CAS  Google Scholar 

  • Sirkin DW, Feng AS. Autoradiographic study of descending pathways from the pontine reticular formation and the mesencephalic trigeminal nucleus in the rat. J Comp Neurol 1987;256:483–93.

    Article  PubMed  CAS  Google Scholar 

  • Villanueva L, Peschanski M, Calvino B, Le Bars D. Ascending pathways in the spinal cord involved in triggering of diffuse noxious inhibitory controls in the rat. J Neurophysiol 1986;55:34–55.

    PubMed  CAS  Google Scholar 

  • Willis WD Jr. The raphe-spinal system. In: Barnes CD, editor. Brainstem control of spinal cord function. Orlando: Academic Press; 1984. p. 141–214.

    Google Scholar 

  • Wolters JG, de Boer-Van Huizen R, Ten Donkelaar HJ, Leenen L. Collateralization of descending pathways from the brain-stem to the spinal cord in a lizard, varanus exanthematicus. J Comp Neurol 1986;251:317–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Tomita, M., Shimoji, K. (2006). Heterosegmental SCPs (HSPs). In: Shimoji, K., Willis, W.D. (eds) Evoked Spinal Cord Potentials. Springer, Tokyo. https://doi.org/10.1007/4-431-30901-2_8

Download citation

  • DOI: https://doi.org/10.1007/4-431-30901-2_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-24026-6

  • Online ISBN: 978-4-431-30901-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics