Skip to main content

Spinal Cord Potentials Evoked by Descending Volleys

  • Chapter
Evoked Spinal Cord Potentials
  • 960 Accesses

Abstract

When the dorsal surface of the human spinal cord is stimulated through a pair of electrodes situated in the cervical posterior epidural space (PES), a series of potentials can be recorded from the PES of the lumbosacral enlargement. The potentials begin with mono- or polyphasic spikes associated with the arrival of the volleys at the lumbar enlargement. Following these spikes, a series of slow potentials occur. These include a slow and sharp negative wave followed by a slow positive wave (Fig. 3.1). These slow negative (descending N) and positive (descending P) complexes resemble the segmentally evoked N1 and P2 waves (segmental N1 and P2), respectively. The similarity between the negative-positive complex evoked by descending volleys and the N1–P2 wave complex elicited by segmental nerve stimulation suggests that the origins of these slow descending N and P waves of SCPs are similar to those of the N1 and P2 waves of segmentally evoked SCPs (Shimizu et al., 1979a) (Table 3.1). The segmental N1 and P2 waves in humans show approximately the same characteristics as the slow negative and positive waves of the cord dorsum potential in animals (Shimoji et al., 1975, 1977), which are believed to be produced by the excitation of interneurons and primary afferent depolarization (PAD), respectively (Bernhard and Widen, 1953; Schmidt, 1971).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Section B: Chapter 3

  • Abdelmoumene M, Besson JM, Aleonard P. Cortical areas exerting presynaptic inhibitory action on the spinal cord in cat and monkey. Brain Res 1970;20:327–9.

    Article  PubMed  CAS  Google Scholar 

  • Andersen P, Eccles JC, Sears TA. Presynaptic inhibitory action of cerebral cortex on the spinal cord. Nature 1962;194:740–1.

    Article  PubMed  CAS  Google Scholar 

  • Austin GM, McCouch GP. Presynaptic component of intermediary cord potential. J Neurophysiol 1955;18:441–51.

    PubMed  CAS  Google Scholar 

  • Barnes CD, Fung SJ, Adams WL. Inhibitory effects of substantia nigra on impulse transmission from nociceptors. Pain 1979;6:207–15.

    Article  PubMed  CAS  Google Scholar 

  • Basbaum AI, Clanton CH, Fields HL. Opiate and stimulus-produced analgesia: functional anatomy of a medullospinal pathway. Proc Natl Acad Sci USA 1976;73:4685–8.

    Article  PubMed  CAS  Google Scholar 

  • Beall JE, Applebaum AE, Foreman RD, Willis WD. Spinal cord potentials evoked by cutaneous afferents in the monkey. J Neurophysiol 1977;40:199–211.

    PubMed  CAS  Google Scholar 

  • Bernhard CG, Widen L. On origin of negative and positive spinal cord potentials evoked by stimulation of low threshold cutaneous fibers. Acta Physiol Scand 1953;29(Suppl 106):42–54.

    Google Scholar 

  • Besson JM, Rivot JP. Spinal interneurones involved in presynaptic controls of supraspinal origin. J Physiol (Lond) 1973;230:235–54.

    PubMed  CAS  Google Scholar 

  • Cervero F, Molony V, Iggo A. Supraspinal linkage of substantia gelatinosa neurones: effects of descending impulses. Brain Res 1980;175:351–5.

    Article  Google Scholar 

  • Chan SHH. Negative potentials evoked by nucleus reticularis gigantocellularis in the spinal trigeminal tract of the cat. Exp Neurol 1980;68:249–57.

    Article  PubMed  CAS  Google Scholar 

  • Chan SHH, Barnes CD. A presynaptic mechanism evoked from brain stem reticular formation in the lumbar cord and its temporal significance. Brain Res 1972;45:101–14.

    Article  PubMed  CAS  Google Scholar 

  • Dubuisson D, Wall PD. Descending influences on receptive fields and activity of single units recorded in laminae 1, 2 and 3 of cat spinal cord. Brain Res 1980;199:283–98.

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC. The physiology of synapses. New York: Academic Press; 1964. p. 220–38.

    Google Scholar 

  • Eccles JC, Kostyuk PG, Schmidt RF. Central pathway responsible for depolarization of primary afferent fibers. J Physiol (Lond) 1962;161:237–57.

    PubMed  CAS  Google Scholar 

  • Engberg I, Lundberg A, Ryall RW. Reticulospinal inhibition of transmission in reflex pathways. J Physiol (Lond) 1968a;194:201–23.

    PubMed  CAS  Google Scholar 

  • Engberg I, Lundberg A, Ryall RW. Reticulospinal inhibition of interneurones. J Physiol (Lond) 1968b;194:225–36.

    PubMed  CAS  Google Scholar 

  • Fields HL, Basbaum AI. Brainstem control of spinal pain-transmission neurons. Ann Rev Physiol 1978;40:217–48.

    Article  CAS  Google Scholar 

  • Fields HL, Basbaum AI, Clanton CH, Anderson SD. Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons. Brain Res 1977;126:441–53.

    Article  PubMed  CAS  Google Scholar 

  • Foreman RD, Beall JE, Applebaum AE, Coulter JD, Wills WD. Effects of dorsal column stimulation on primate spinothalamic tract neurons. J Neurophysiol 1976;39:534–46.

    PubMed  CAS  Google Scholar 

  • Handwerker HO, Iggo A, Zimmermann M. Segmental and supraspinal actions on dorsal horn neurons responding to noxious and non-noxious skin stimuli. Pain 1975;1:147–65.

    Article  PubMed  CAS  Google Scholar 

  • Hodge CJ Jr, Apkarian AV, Stevens R, Vogelsang G, Wisnicki HJ. Locus coeruleus modulation of dorsal horn unit responses to cutaneous stimulation. Brain Res 1981;204:415–20.

    Article  PubMed  Google Scholar 

  • Hongo T, Jankowska E, Lundberg A. Convergence of excitatory and inhibitory action on interneurones in the lumbosacral cord. Exp Brain Res 1966;1:335–58.

    Article  Google Scholar 

  • Knelsley LW, Biber MP, Lavail JH. A study of origin of brain stem projections to monkey spinal cord using the retrograde transport method. Exp Neurol 1978;60:116–39.

    Article  Google Scholar 

  • Kostyuk PG, Vasilenko DA. Spinal interneurons. Ann Rev Physiol. 1979;41:115–26.

    Article  CAS  Google Scholar 

  • Kuypers HGJM, Maisky VA. Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci Lett 1975;1:9–14.

    Article  CAS  PubMed  Google Scholar 

  • Lindblom UF, Ottoson JO. Effects of spinal sections on the spinal cord potentials elicited by stimulation of low threshold cutaneous fibers. Acta Physiol Scand 1953;29(Suppl)106:191–208.

    Google Scholar 

  • Lloyd DPC. Electrotonus in dorsal nerve roots. Cold Spring Harbor Symp Quant Biol 1952;17:203–19.

    PubMed  CAS  Google Scholar 

  • Lundberg A. Supraspinal control of transmission in reflex paths to motoneurons and primary afferents. In: Eccles JC, Schade JP, editors. Progress in brain research, vol. 12. Amsterdam: Elsevier; 1964. p. 197–219.

    Google Scholar 

  • Lundberg A, Norrsell U, Voorhoeve P. Pyramidal effects on lumbosacral inter-neurones activated by somatic afferents. Acta Physiol Scand 1962;56:220–9.

    PubMed  CAS  Google Scholar 

  • Martin RF, Haber LH, Willis WD. Primary afferent depolarization of identified cutaneous fibers following stimulation in medial brain stem. J Neurophysiol 1979;42:779–90.

    PubMed  CAS  Google Scholar 

  • Maruyama Y, Shimoji K, Shimizu H, Kuribayashi H, Fujioka H. Human spinal cord potentials evoked by different sources of stimulation and conduction velocities along the cord. J Neurophysiol 1982;48:1098–107.

    PubMed  CAS  Google Scholar 

  • Menétrey D, Chaouch A, Besson JM. Location and properties of dorsal horn neurons at origin of spinoreticular tract in lumbar enlargement of the rat. J Neurophysiol 1980;44:862–77.

    PubMed  Google Scholar 

  • Motamedi F, York DH. Effects of a nigral descending pathway on cervical spinal cord afferent fibers and interneurons. Exp Neurol 1980;68:258–69.

    Article  PubMed  CAS  Google Scholar 

  • Proudfit HK, Anderson EG. New long latency bulbospinal evoked potentials blocked by serotonin antagonist. Brain Res 1974;65:542–6.

    Article  PubMed  CAS  Google Scholar 

  • Rudomín P, Leonard RB, Willis WD. Primary afferent depolarization and inhibitory interactions in spinal cord of the stingray, Dasyatis sabina. J Neurophysiol 1978;41:126–37.

    PubMed  Google Scholar 

  • Schmidt RF. Presynaptic inhibition in the vertebrate central nervous system. Ergeb Physiol Biol Chem Exp Pharmakol 1971;63:20–101.

    CAS  Google Scholar 

  • Shimizu H, Shimoji K, Maruyama Y, Sato Y, Harayama H, Tsubaki T. Slow cord dorsum potentials elicited by descending volleys in man. J Neurol Neurosurg Psychiatry 1979a;2:242–6.

    Google Scholar 

  • Shimizu H, Shimoji K, Maruyama Y, Sato Y, Kuribayashi H. Interaction between human evoked electrospinograms elicited by segmental and descending volleys. Experimentia 1979b;35:1199–200.

    Article  CAS  Google Scholar 

  • Shimizu H, Shimoji K, Maruyama Y, Matsuki M, Kuribayashi H, Fujioka H. Human spinal cord potentials produced in lumbo-sacral enlargement by descending volleys. J Neurophysiol 1982;48:1108–20.

    PubMed  CAS  Google Scholar 

  • Shimoji K, Kano T. Evoked electrospinogram: interpretation origin and effects of nesthetics. In: Mori K, editor. Effect of anesthesia on the central nervous system. Boston: Little Brown; 1975. p. 171–89.

    Google Scholar 

  • Shimoji K, Kitamura H, Ikezono E, Shimizu H, Okamoto K, Iwakura Y. Spinal hypalgesia and analgesia by low-frequency electrical stimulation in the epidural space. Anesthesiology 1974;41:91–4.

    Article  PubMed  CAS  Google Scholar 

  • Shimoji K, Ito Y, Ohama K, Sawa T, Ikezono E. Presynaptic inhibition in man during anesthesia and sleep. Anesthesiology 1975;43:388–91.

    PubMed  CAS  Google Scholar 

  • Shimoji K, Matsuki M, Ito Y, Masuko K, Maruyama M, Iwane T, Aida S. Interactions of human cord dorsum potential. J Appl Physiol 1976;40:79–84.

    PubMed  CAS  Google Scholar 

  • Shimoji K, Matsuki M, Shimizu H. Wave-form characteristics and spatial distribution of evoked spinal electrogram in man. J Neurosurg 1977;46:304–13.

    Article  PubMed  CAS  Google Scholar 

  • Shimoji K, Shimizu H, Maruyama Y, Matsuki M. Dorsal column stimulation in man: facilitation of primary afferent depolarization. Anesth Analg 1982;61:410–3.

    Article  PubMed  CAS  Google Scholar 

  • Skinner RD, Willis WD. Spinal cord potentials produced by ventral cord volleys in the cat. Exp Neurol 1970;27:318–33.

    Article  PubMed  CAS  Google Scholar 

  • Tang AH. Dorsal root potentials in the chloralose-anesthetized cat. Exp Neurol 1969;25:393–400.

    Article  PubMed  CAS  Google Scholar 

  • Tobita T, Okamoto M, Shimizu M, Yamakura T, Fujihara T, Shimoji K, Baba H. The effects of isoflurane on conditioned inhibition by dorsal column stimulation. Anesth Analg 2003;97:436–41.

    Article  PubMed  CAS  Google Scholar 

  • Tomita M, Shimoji K, Denda S, Tobita T, Uchiyama S, Baba H. Spinal tracts producing slow components of spinal cord potentials evoked by descending volleys in man. Electroencephalogr Clin Neurophysiol 1996;100:68–73.

    Article  PubMed  CAS  Google Scholar 

  • Wall PD. The laminar organization of dorsal horn and effects of descending impulse. J Physiol (Lond) 1967;188:403–23.

    CAS  Google Scholar 

  • Willis WD, Coggeshall RE. Sensory mechanisms of the spinal cord. New York, Plenum; 2004.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Shimizu, H., Shimoji, K. (2006). Spinal Cord Potentials Evoked by Descending Volleys. In: Shimoji, K., Willis, W.D. (eds) Evoked Spinal Cord Potentials. Springer, Tokyo. https://doi.org/10.1007/4-431-30901-2_7

Download citation

  • DOI: https://doi.org/10.1007/4-431-30901-2_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-24026-6

  • Online ISBN: 978-4-431-30901-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics