Skip to main content

Overviews of Human (Evoked) Spinal Cord Potentials (SCPs): Recording Methods and Terminology

  • Chapter
Evoked Spinal Cord Potentials

Abstract

Since Gasser and Graham (1933) first recorded the segmental spinal cord potential (SCP) from the dorsal surface of the cord in response to stimulation of the dorsal roots, its origin has been investigated by many neurophysiologists (Armett et al., 1961; Austin and McCouch, 1955; Barron and Matthews, 1938; Beall et al., 1977; Bernhard, 1953; Campbell, 1945; Carpenter and Rudomín, 1973; Fitzgerald and Wall, 1980; Howland et al., 1955; Lindblom and Ottoson, 1953a,b; Lupa and Niechaj, 1977). The fundamental pattern of the segmental SCP consists of an initially positive spike and subsequent slow negative (N) and positive (P) waves (refer to basic physiology, Chapter 2). It is generally agreed that the initially positive spike and N- and P-waves reflect the incoming afferent volleys along the root, the activities of interneurons in the dorsal horn, and the generation of primary afferent depolarization (PAD), respectively (Anders-Trelles, 1976; Barron and Matthews, 1938; Bernhard, 1953; Eccles and Malcolm, 1946; Eccles et al., 1963a; Fernandez de Molina and Gray, 1957; Fitzgerald and Wall, 1980; Hughes and Gasser, 1934a,b; Koketsu, 1956a,b; Mendell, 1972; Wall, 1958) (Fig. 4.1). The N-wave has been subdivided into two (Austin and McCouch, 1955; Bernhard, 1953) or three components (Beall et al., 1977; Christensen and Perl, 1970), the origins of which are variously interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Section A: Chapter 4

  • Andres-Trelles F, Cowan CM, Simmonds MA. The negative potential wave evoked in cuneate nucleus by stimulation of afferent pathways: its origins and susceptibility to inhibition. J Physiol (Lond) 1976;258:173–86.

    PubMed  CAS  Google Scholar 

  • Armett CJ, Gray JAB, Palmer JF. A group of neurones in the dorsal horn associated with cutaneous mechanoreceptors. J Physiol (Lond) 1961;156:611–22.

    PubMed  CAS  Google Scholar 

  • Austin GM, McCouch GP. Presynaptic component of intermediary cord potential. J Neurophysiol 1955;18:441–51.

    PubMed  CAS  Google Scholar 

  • Barron DH, Matthews BHC. The interpretation of potential changes in the spinal cord. J Physiol (Lond) 1938;92:276–321.

    PubMed  CAS  Google Scholar 

  • Beall JE, Applebaum AE, Foreman RD, Willis WD. Spinal cord potentials evoked by cutaneous afferents in the monkey. J Neurophysiol 1977;40:199–211.

    PubMed  CAS  Google Scholar 

  • Bernhard CG. The spinal cord potentials in leads from the cord dorsum in relation to peripheral source of afferent stimulation. Acta Physiol Scand 1953;29(Suppl)106:1–29.

    Google Scholar 

  • Campbell B. The distribution of potential fields within the spinal cord. Anat Rec 1945;91:77–88.

    Article  Google Scholar 

  • Carpenter DO, Rudomín P. The organization of primary afferent depolarization in the isolated spinal cord of the frog. J Physiol (Lond) 1973;229:471–93.

    PubMed  CAS  Google Scholar 

  • Christensen BN, Perl ER. Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. J Neurophysiol 1970;33:293–307.

    PubMed  CAS  Google Scholar 

  • Eccles JC, Malcolm JL. Dorsal root potentials of the spinal cord. J Neurophysiol 1946;9:139–60.

    Google Scholar 

  • Eccles JC, Kostyuk PG, Schmidt RF. Central pathway responsible for depolarization of primary afferent fibers. J Physiol (Lond) 1962a;161:237–57.

    PubMed  CAS  Google Scholar 

  • Eccles JC, Kostyuk PG, Schmidt RF. Presynaptic inhibition of the central actions of flexor reflex afferents. J Physiol (Lond) 1962b;161:258–81.

    PubMed  CAS  Google Scholar 

  • Eccles JC, Magni F, Willis WD. Depolarization of central terminals of Group I afferent fibres from muscle. J Physiol (Lond) 1962c;160:62–93.

    PubMed  CAS  Google Scholar 

  • Eccles JC, Schmidt RF, Willis WD. Depolarization of the central terminals of cutaneous afferent fibers. J Neurophysiol 1963a;26:646–61.

    Google Scholar 

  • Fernandez de Molina A, Gray JAB. Activity in the dorsal spinal grey matter after stimulation of cutaneous nerves. J Physiol (Lond) 1957;137:126–40.

    PubMed  CAS  Google Scholar 

  • Fitzgerald M, Wall PD. The laminar organization of dorsal horn cells responding to peripheral C fiber stimulation. Exp Brain Res 1980;41:36–44.

    Article  PubMed  CAS  Google Scholar 

  • Gasser HS, Graham HT. Potentials produced in the spinal cord by stimulation of dorsal roots. Am J Physiol 1933;103:303–20.

    Google Scholar 

  • Hayatsu K, Tomita M, Fujihara H, Baba H, Yamakura T, Taga K, Shimoji K. The placement of the epidural catheter at the predicted site by electrical stimulation test. Anesth Analg. 2001;93:1035–9.

    Article  PubMed  CAS  Google Scholar 

  • Howland B, Lettvin JY, McCulloch WS, Pitts W, Wall PD. Reflex inhibition by dorsal root interaction. J Neurophysiol 1955;18:1–17.

    PubMed  CAS  Google Scholar 

  • Hughes J, Gasser HS. Some properties of the spinal cord potentials evoked by a single afferent volley. Am J Physiol 1934a;108:295–306.

    Google Scholar 

  • Hughes J, Gasser HS. The response of the spinal cord to two afferent volleys. Am J Physiol 1934b;108:307–21.

    Google Scholar 

  • Kano T, Shimoji K. Influence of anesthesia on intraoperative monitoring of SCEPs. In: Dimitrijevic MR, Halter JA, editors. Atlas of human spinal cord evoked potentials. Boston: Butterworth-Heinemann; 1995. p. 97–106.

    Google Scholar 

  • Koketsu K. Intracellular slow potential of dorsal root fibers. Am J Physiol 1956a;184:338–44.

    PubMed  CAS  Google Scholar 

  • Koketsu K. Intracellular potential changes of primary afferent nerve fibers in spinal cord of cats. J Neurophysiol 1956b;19:375–92.

    PubMed  CAS  Google Scholar 

  • Lindblom UF, Ottoson JO. Localization of the structure generating the negative cord dorsum potential evoked by stimulation of low threshold cutaneous fibers. Acta Physiol Scand 1953a;29(Suppl 106):180–90.

    Google Scholar 

  • Lindblom UF, Ottoson JO. Effects of spinal sections on the spinal cord potentials elicited by stimulation of low threshold cutaneous fibers. Acta Physiol Scand 1953b;29(Suppl)106:191–208.

    Google Scholar 

  • Lloyd DPC. Electrotonus in dorsal nerve roots. Cold Spring Harbor Symp Quant Biol 1952;17:203–19.

    PubMed  CAS  Google Scholar 

  • Lupa K, Niechaj A. Bilateral dorsal root potentials in the lower sacral spinal cord. Pfluegers Arch 1977;369:187–92.

    Article  CAS  Google Scholar 

  • Magladery JW, Porter WE, Park AM, Teasdall RD. Electrophysiological studies of nerve reflex activity in normal man. IV. The two-neurone reflex and identification of certain action potentials from spinal roots and cord. Bull Johns Hopkins Hosp 1951;88:499–519.

    PubMed  CAS  Google Scholar 

  • Mendell L. Properties and distribution of peripherally evoked presynaptic hyperpolarization in cat lumbar spinal cord. J Physiol (Lond) 1972;226:769–92.

    PubMed  CAS  Google Scholar 

  • Rudomín P, Leonard RB, Willis WD. Primary afferent depolarization and inhibitory interactions in spinal cord of the stingray, Dasyatis sabina. J Neurophysiol 1978;41:126–37.

    PubMed  Google Scholar 

  • Schmidt RF. Presynaptic inhibition in the vertebrate central nervous system. Ergeb Physiol Biol Chem Exp Pharmakol 1971;63:20–101.

    CAS  Google Scholar 

  • Shimoji K, Higashi H, Kano T. Epidural recording of spinal electrogram in man. Electroencephalogr clin Neurophysiol 1971;30:236–9.

    Article  PubMed  CAS  Google Scholar 

  • Shimoji K, Higashi H, Kano T, Asai S, Morioka T. Electrical management of intractable pain. Jpn J Anesthesiol 1971;20:444–7.

    CAS  Google Scholar 

  • Shimoji K, Kano T, Higashi H, Morioka T, Henschel EO. Evoked spinal electrograms recorded from epidural space in man. J Appl Physiol 1972;33:468–71.

    PubMed  CAS  Google Scholar 

  • Shimoji K, Ito Y, Ohama K, Sawa T, Ikezono E. Presynaptic inhibition in man during anesthesia and sleep. Anesthesiology 1975;43:388–91.

    Article  PubMed  CAS  Google Scholar 

  • Shimoji K, Matsuki M, Ito Y, Masuko K, Maruyama M, Iwane T, Aida S. Interactions of human cord dorsum potential. J Appl Physiol 1976;40:79–84.

    PubMed  CAS  Google Scholar 

  • Shimoji K, Matsuki M, Shimizu H. Wave-form characteristics and spatial distribution of evoked spinal electrogram in man. J Neurosurg 1977;46:304–13.

    PubMed  CAS  Google Scholar 

  • Shimoji K, Shimizu H, Maruyama Y. Origin of somatosensory evoked responses recorded from the cervical skin surface. J Neurosurg 1978;48:980–4.

    PubMed  CAS  Google Scholar 

  • Shimoji K, Shimizu H, Maruyama Y, Matsuki M. Dorsal column stimulation in man: facilitation of primary afferent depolarization. Anesth Analg 1982;61:410–13.

    Article  PubMed  CAS  Google Scholar 

  • Shimoji K, Shimizu H, Maruyama Y, Fujioka H. Human spinal cord potentials produced by ascending and descending volleys. In: Homma S, Tamaki T, editors. Fundamentals and clinical application of spinal cord monitoring. Tokyo: Saikon; 1984. p. 45–59.

    Google Scholar 

  • Wall PD. Excitability changes in afferent fibre terminations and their relation to slow potentials. J Physiol (Lond) 1958;142:1–21.

    PubMed  CAS  Google Scholar 

  • Yates BJ, Thompson FJ, Mickle JP Origin and properties of spinal cord field potentials. Neurosurgery 1982;11:439–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Shimoji, K. (2006). Overviews of Human (Evoked) Spinal Cord Potentials (SCPs): Recording Methods and Terminology. In: Shimoji, K., Willis, W.D. (eds) Evoked Spinal Cord Potentials. Springer, Tokyo. https://doi.org/10.1007/4-431-30901-2_4

Download citation

  • DOI: https://doi.org/10.1007/4-431-30901-2_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-24026-6

  • Online ISBN: 978-4-431-30901-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics