Skip to main content

Pharmacology of the Spinal Cord

  • Chapter
Evoked Spinal Cord Potentials
  • 959 Accesses

Abstract

As in the brain, the presynaptic terminals of most excitatory synapses in the spinal cord release glutamate as a fast excitatory neurotransmitter (Curtis et al., 1959; reviewed in Willis and Coggeshall, 2004). In addition to glutamate, primary afferent terminals of nociceptors can also contain excitatory neuropeptides, such as substance P (SP; De Biasi and Rustioni, 1988) and calcitonin gene-related peptide (CGRP; Wiesenfeld-Hallin et al., 1984). Aspartate does not appear to be a transmitter in primary afferent terminals, since it is not stored in synaptic vesicles in such endings (Broman and Adahl, 1994). However, aspartate is released from dorsal horn interneurons and may well serve as a fast excitatory transmitter of interneurons, in addition to glutamate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Section A: Chapter 3

  • Alvarez-Leefmans FJ, Gamiño SM, Giraldez F, Nogierón, I. Intracellular chloride regulation in amphibian dorsal root ganglion neurons studied with ion-selective microelectrodes. J Physiol 1988;406:225–46.

    PubMed  CAS  Google Scholar 

  • Besson JM, Chaouch A. Peripheral and spinal mechanisms of nociception. Physiol Rev 1987;67:67–186.

    PubMed  CAS  Google Scholar 

  • Broman J, Adahl F. Evidence for vesicular storage of glutamate in primary afferent terminals. NeuroReport 1994;5:1801–4.

    Article  PubMed  CAS  Google Scholar 

  • Chung K, Lee WT, Carlton SM. The effects of dorsal rhizotomy and spinal cord isolation on calcitonin gene-related peptide-containing terminals in the rat lumbar dorsal horn. Neurosci Lett 1988;90:27–32.

    Article  PubMed  CAS  Google Scholar 

  • Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 1997;37:205–37.

    Article  PubMed  CAS  Google Scholar 

  • Curtis DR, Phillis JW, Watkins JC. Chemical excitation of spinal neurons. Nature 1959;183:611–12.

    Article  PubMed  CAS  Google Scholar 

  • De Biasi S, Rustioni A. Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of spinal cord. Proc Natl Acad Sci USA 1988;85:7820–4.

    Article  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999;51:7–61.

    PubMed  CAS  Google Scholar 

  • Dougherty PM, Willis WD. Enhancement of spinothalamic neuron responses to chemical and mechanical stimulation following combined iontophoretic application of N-methyl-Daspartic acid and substance P. Pain 1991;47:85–93.

    Article  PubMed  CAS  Google Scholar 

  • Dougherty PM, Palecek J, Paleckova V, Sorkin LS, Willis WD. The role of NMDA and non-NMDA excitatory amino acid receptors in the excitation of primate spinothalamic tract neurons by mechanical, chemical, thermal, and electrical stimuli. J Neurosci 1992;12:3025–41.

    PubMed  CAS  Google Scholar 

  • Eccles JC. The physiology of synapses. New York: Springer; 1964.

    Google Scholar 

  • Hollman M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci 1994;17: 31–108.

    Article  Google Scholar 

  • Hori Y, Lee KH, Chung JM, Endo K, Willis WD. The effects of small doses of barbiturate on the activity of primate nociceptive tract cells. Brain Res 1984;307:9–15.

    Article  PubMed  CAS  Google Scholar 

  • Hunt SP, Kelly JS, Emson PC. The electron-microscopic localization of methionin-enkephalin within the superficial layers (I and II) of the spinal cord. Neuroscience 1980;5:1871–90.

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER, Schwatrz JH, Jessell TM, editors. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000. p. 240–8.

    Google Scholar 

  • Lin Q, Peng YB, Willis WD. Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition. J Neurophysiol 1996;75:109–23.

    PubMed  CAS  Google Scholar 

  • Miller BA, Woolf CJ. Glutamate-mediated slow synaptic currents in neonatal rat deep dorsal horn neurons in vitro. J Neurophysiol 1996;76:1465–76.

    PubMed  CAS  Google Scholar 

  • Nässtrom J, Schneider SP, Perl ER. Differential L-glutamate responsiveness among superficial dorsal horn neurons. J Neurophysiol 1994;72:2956–65.

    Google Scholar 

  • Nicoll RA, Schenker C, Leeman SE. Substance P as a transmitter candidate. Annu Rev Neurosci 1980;3:227–68.

    Article  PubMed  CAS  Google Scholar 

  • Ruda MA, Iadarola MJ, Cohen LV, Young WS. In situ hybridization histochemistry and immunocytochemistry reveal an increase in spinal dynorphin biosynthesis in a rat model of peripheral inflammation and hyperalgesia. Proc Natl Acad Sci USA 1988;85:622–6.

    Article  PubMed  CAS  Google Scholar 

  • Salter MW, De Koninck Y, Henry, JL. Physiological roles for adenosine and ATP in synaptic transmission in the spinal dorsal horn. Prog Neurobiol 1993;41:125–56.

    Article  PubMed  CAS  Google Scholar 

  • Sawynok, J, Sweeney, MI. The role of purines in nociception. Neuroscience 1989;32:557–69.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp DD. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 2001;299:12–20.

    PubMed  CAS  Google Scholar 

  • Wiesenfeld-Hallin Z, Hökfelt T, Lundberg JM, Firssmann WG, Reunecke M, Tschopp FA, Fischer JA. Immunoreactive calcitonin gene-related peptide and substance P coexist in sensory neurons in the spinal cord and interact in spinal behavioral responses of the rat. Neurosci Lett 1984;52:199–204.

    Article  PubMed  CAS  Google Scholar 

  • Willcockson WS, Chung JM, Hori Y, Lee KH, Willis WD. Effects of iontophoretically released amino acids and amines on primate spinothalamic tract cells. J Neurosci 1984;4:732–40.

    PubMed  CAS  Google Scholar 

  • Willcockson WS, Kim J, Shin HK, Chung JM, Willis WD. Actions of opioids on primate spinothalamic tract neurons. J Neurosci 1986;6:2509–20.

    PubMed  CAS  Google Scholar 

  • Willis WD. Control of nociceptive transmission in the spinal cord. In: Ottoson D, editor. Progress in sensory physiology, vol. 3. Berlin: Springer; 1982.

    Google Scholar 

  • Willis WD. Anatomy and physiology of descending control of nociceptive responses of dorsal horn neurons: comprehensive review. In: Fields HL, Besson JM, editors. Progress in brain research, vol. 75. Amsterdam: Elsevier; 1988. p. 1–29.

    Google Scholar 

  • Willis WD. Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res 1999;124:395–421.

    Article  PubMed  CAS  Google Scholar 

  • Willis WD, Coggeshall RE. Sensory mechanisms of the spinal cord. 3rd ed. New York: Kluwer Academic/Plenum; 2004.

    Google Scholar 

  • Wu SY, Dun SL, Wright MT, Chang JK, Dun NJ. Endomorphin-like immunoreactivity in the rat dorsal horn and inhibition of substantia gelatinosa neurons in vitro. Neuroscience 1999;89:317–21.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura M, Jessell TM. Amino acid-mediated EPSPs at primary afferent synapses with substantia gelatinosa neurons in the rat spinal cord. J Physiol 1990;430:315–35.

    PubMed  CAS  Google Scholar 

  • Zadina JE, Hackler L, Ge LJ, Kastin AJ. A potent and selective endogenous agonist for the muopiate receptor. Nature 1997;386:499–502.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Willis, W.D. (2006). Pharmacology of the Spinal Cord. In: Shimoji, K., Willis, W.D. (eds) Evoked Spinal Cord Potentials. Springer, Tokyo. https://doi.org/10.1007/4-431-30901-2_3

Download citation

  • DOI: https://doi.org/10.1007/4-431-30901-2_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-24026-6

  • Online ISBN: 978-4-431-30901-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics