Skip to main content

Monitoring by SCPs During Surgical Operations

  • Chapter
Evoked Spinal Cord Potentials

Abstract

Neurological deficits after spinal cord or spine surgery pose a serious problem. There have been many attempts to monitor spinal cord function during spine or spinal cord surgery by using somatosensory evoked potentials (SEP) recorded from the scalp (Grundy and Villani, 1988; Levy et al., 1984). Unfortunately these potentials are susceptible to the effects of anesthetic agents and vary during the course of anesthesia and surgery (McPherson et al., 1985; McPherson and Ducker, 1988; Clark and Rosner, 1973; Samra et al., 1987; McPherson and Levitt, 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Section D: Chapter 1

  • Amassian VE, Stewart M, Quick GJ, Rosenthal JL. Physiological basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery 1987;20:74–93.

    PubMed  CAS  Google Scholar 

  • Arai M, Goto T, Seichi A, Nakamura K. Effects of antithrombin three on spinal cord-evoked potentials and functional recovery after spinal cord injury in rats. Spine 2004;29:405–12.

    Article  PubMed  Google Scholar 

  • Azizzadeh A, Huynh TT, Miller CC 3rd, Safi HJ. Reversal of twice-delayed neurologic deficits with cerebrospinal fluid drainage after thoracoabdominal aneurysm repair: a case report and plea for a national database collection. J Vasc Surg 2000;31:592–8.

    Article  PubMed  CAS  Google Scholar 

  • Bolton CF, Sawa GM, Carter K. The effects of temperature on human compound action potentials. J Neurol Neurosurg Psychiatry 1981;44:407–13.

    Article  PubMed  CAS  Google Scholar 

  • Boyd SG, Rothwell JC, Cowan JM, et al. A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiatry 1986;49:251–7.

    PubMed  CAS  Google Scholar 

  • Burke D, Hicks RG. Surgical monitoring of motor pathways. J Clin Neurophysiol 1998;15:194–205.

    Article  PubMed  CAS  Google Scholar 

  • Calancie B, Harris W, Brindle GF, et al. Threshold-level repetitive transcranial electrical stimulation for intraoperative monitoring of central motor conduction. J Neurosurg Spine 2001;95:161–8.

    CAS  Google Scholar 

  • Calancie B, Harris W, Broton JG, Alexeeva N, Green BA. “Threshold-level” multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg 1998;88:457–70.

    PubMed  CAS  Google Scholar 

  • Carpenter MB, Sutin J. Human neuroanatomy. 8th ed. Baltimore: Williams & Wilkins; 1983. p. 707–41.

    Google Scholar 

  • Cina CS, Lagana A, Bruin G, Ricci C, Doobay B, Tittley J, Clase CM. Thoracoabdominal aortic aneurysm repair: a prospective cohort study of 121 cases. Ann Vasc Surg 2002;16:631–8.

    Article  PubMed  Google Scholar 

  • Clark DL, Rosner BS. Neurophysiological effects of general anesthetics. I. The electroencephalogram and sensory evoked responses in man. Anesthesiology 1973;38:564–82.

    Article  PubMed  CAS  Google Scholar 

  • Coselli JS. Thoracic aortic aneurysms. In: Ascher E, editor. Vascular surgery. Massachusetts: Blackwell; 2004. p. 663–86.

    Google Scholar 

  • Coselli JS, LeMaire SA. Surgical techniques. Thoracoabdominal aorta. Cardiol Clin 1999;17:751–65.

    Article  PubMed  CAS  Google Scholar 

  • Coselli JS, LeMaire SA, Miller CC 3rd, Schmittling ZC, Koksoy C, Pagan J, Curling PE. Mortality and paraplegia after thoracoabdominal aortic aneurysm repair: a risk factor analysis. Ann Thorac Surg 2000;69:409–14.

    Article  PubMed  CAS  Google Scholar 

  • Coselli JS, Lemaire SA, Koksoy C, Schmittling ZC, Curling PE. Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial. J Vasc Surg 2002;35:631–9.

    Article  PubMed  Google Scholar 

  • Crawford ES, Mizrahi EM, Hess KR, Coselli JS, Safi HJ, Patel VM. The impact of distal aortic perfusion and somatosensory evoked potential monitoring on prevention of paraplegia after aortic aneurysm operation. J Thorac Cardiovasc Surg 1988;95:357–67.

    PubMed  CAS  Google Scholar 

  • Crock HV, Yoshizawa H. The blood supply of the vertebral column and spinal cord in man. New York: Springer; 1977.

    Google Scholar 

  • de Haan P, Kalkman CJ, Ubags LH, Jacobs MJ, Drummond JC. A comparison of the sensitivity of epidural and myogenic transcranial motor-evoked responses in the detection of acute spinal cord ischemia in the rabbit. Anesth Analg 1996;83:1022–7.

    Article  PubMed  Google Scholar 

  • de Haan P, Kalkman CJ, de Mol BA, Ubags LH, Veldman DJ, Jacobs MJ. Efficacy of transcranial motor-evoked myogenic potentials to detect spinal cord ischemia during operations for thoracoabdominal aneurysms. J Thorac Cardiovasc Surg 1997;113:87–100; discussion 100-1.

    Article  PubMed  Google Scholar 

  • de Haan P, Kalkman CJ, Jacobs MJ. Spinal cord monitoring with myogenic motor evoked potentials: early detection of spinal cord ischemia as an integral part of spinal cord protective strategies during thoracoabdominal aneurysm surgery. Semin Thorac Cardiovasc Surg 1998;10:19–24.

    PubMed  Google Scholar 

  • Deletis V, Rodi Z, Amassian VE. Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 2. Relationship between epidurally and muscle recorded MEPs in man. Clin Neurophysiol 2001;112:445–52.

    Article  PubMed  CAS  Google Scholar 

  • Dobkin BH, Havton LA. Basic advances and new avenues in therapy of spinal cord injury. Annu Rev Med 2004,55:255–82.

    Article  PubMed  CAS  Google Scholar 

  • Dong CC, MacDonald DB, Janusz MT. Intraoperative spinal cord monitoring during descending thoracic and thoracoabdominal aneurysm surgery. Ann Thorac Surg 2002;74:S1873–6.

    Article  PubMed  Google Scholar 

  • Elmore JR, Gloviczki P, Harper CM, Pairolero PC, Murray MJ, Bourchier RG, Bower TC, Daube JR. Failure of motor evoked potentials to predict neurologic outcome in experimental thoracic aortic occlusion. J Vasc Surg 1991;14:131–9.

    Article  PubMed  CAS  Google Scholar 

  • Estrera AL, Miller CC 3rd, Huynh TT, Porat E, Safi HJ. Neurologic outcome after thoracic and thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 2001;72:1225–30; discussion 1230–21.

    Article  PubMed  CAS  Google Scholar 

  • Estrera AL, Miller CC 3rd, Huynh TT, Azizzadeh A, Porat EE, Vinnerkvist A, Ignacio C, Sheinbaum R, Safi HJ. Preoperative and operative predictors of delayed neurologic deficit following repair of thoracoabdominal aortic aneurysm. J Thorac Cardiovasc Surg 2003;126:1288–94.

    Article  PubMed  Google Scholar 

  • Fujioka H, Shimoji K, Tomita M, Denda S, Hokari T, Yohyama M. Effects of dorsal root entry zone lesion on spinal cord potentials evoked by segmental, ascending and descending volleys. Acta Neurochir (Wien) 1992;117:135–42.

    Article  CAS  Google Scholar 

  • Fujioka H, Shimoji K, Tomita M, Denda S, Takada T, Homma T, Uchiyama S, Takahashi H, Tobita T, Baba H. Spinal cord potential recordings from the extradural space during scoliosis surgery. Br J Anaesth 1994;73:350–6.

    Article  PubMed  CAS  Google Scholar 

  • Ghaly RF, Ham JH, Lee JJ. High-dose ketamine hydrochloride maintains somatosensory and magnetic motor evoked potentials in primates. Neurol Res 2001;23:881–6.

    Article  PubMed  CAS  Google Scholar 

  • Ghez C, Krakauer J. The organization of movement. In: Kandel E, Schwartz J, Jessell T, editors. Principles of neural science. New York: McGraw-Hill; 2000. p. 653–73.

    Google Scholar 

  • Gotoh N. Anatomy in spinal vessels. Spine Spinal Cord 1993;6:35–9.

    Google Scholar 

  • Gravereaux EC, Faries PL, Burks JA, Latessa V, Spielvogel D, Hollier LH, Marin ML. Risk of spinal cord ischemia after endograft repair of thoracic aortic aneurysms. J Vasc Surg 2001;34:997–1003.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths IR, Pitts LH, Crawford RA, Trench JG. Spinal cord compression and blood flow. I. The effect of raised cerebrospinal fluid pressure on spinal cord blood flow. Neurology 1978;28:1145–51.

    PubMed  CAS  Google Scholar 

  • Grundy BL, Villani RM. Evoked potentials: intraoperative and ICE Monitoring. Berlin New York: Springer; 1988.

    Google Scholar 

  • Guyton AC. Organisation of the nervous system: basic functions of synapses and transmitter substances. In: Textbook of medical physiology. Philadelphia: Saunders; 1991. p. 478–94.

    Google Scholar 

  • Haghighi SS, Gaines RW. Repetitive vs. single transcranial electrical stimulation for intraoperative monitoring of motor conduction in spine surgery. Mol Med 2003;100:262–5.

    Google Scholar 

  • Harada H, Kaneko S, Kano T, Tayama K, Akashi H, Aoyagi S. Safety management of a patient undergoing thoracic aortic surgery by spinal evoked potential monitoring. Ann Thorac Cardiovasc Surg 1998;4:37–40.

    PubMed  CAS  Google Scholar 

  • Hill AB, Kalman PG, Johnston KW, Vosu HA. Reversal of delayed-onset paraplegia after thoracic aortic surgery with cerebrospinal fluid drainage. J Vasc Surg 1994;20:315–7.

    PubMed  CAS  Google Scholar 

  • Hollier LH, Money SR, Naslund TC, Proctor CD, Sr., Buhrman WC, Marino RJ, Harmon DE, Kazmier FJ. Risk of spinal cord dysfunction in patients undergoing thoracoabdominal aortic replacement. Am J Surg 1992;164:210–3; discussion 213–4.

    Article  PubMed  CAS  Google Scholar 

  • Iizuka T, Kurokawa T. Transient augmentation of the evoked spinal cord and peripheral nerve action potentials through ischemia. Jap J Orthoped 1982;56:163–70.

    CAS  Google Scholar 

  • Ishijima B, Shimizu H, Takahashi H, Yasue S, Shimizu H, Shimoji K. Dorsal root entry zone-tomy and trigeminal spinal nucleotomy for deafferented pain with the consideration of the pain modulation mechanisms in the dorsal horn. Neurosurgeons 1985;4:1–12.

    Google Scholar 

  • Jacobs MJ, de Mol BA, Elenbaas T, Mess WH, Kalkman CJ, Schurink GW, Mochtar B. Spinal cord blood supply in patients with thoracoabdominal aortic aneurysms. J Vasc Surg 2002a;35:30–7.

    PubMed  Google Scholar 

  • Jacobs MJ, Elenbaas TW, Schurink GW, Mess WH, Mochtar B. Assessment of spinal cord integrity during thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 2002b;74:S1864–66.

    Article  PubMed  Google Scholar 

  • Jeanmonod D, Sindou M. Somatosensory function following dorsal root entry zone lesions in patients with neurogenic pain or spasticity. J Neurosurg 1991;74:916–32.

    Article  PubMed  CAS  Google Scholar 

  • Jones SJ, Harrison R, Koh KF, et al. Motor evoked potential monitoring during spinal surgery: responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroencephalogr Clin Neurophysiol 1996;100:375–83.

    PubMed  CAS  Google Scholar 

  • Jones SJ, Buonamassa S, Crockard HA. Two cases of quadriparesis following anterior cervical discectomy, with normal perioperative somatosensory evoked potentials. J Neurol Neurosurg Psychiatry 2003;74:273–6.

    Article  PubMed  CAS  Google Scholar 

  • Kakinohana M, Marsala M, Carter C, Davison JK, Yaksh TL. Neuraxial morphine may trigger transient motor dysfunction after a noninjurious interval of spinal cord ischemia: a clinical and experimental study. Anesthesiology 2003;98:862–70.

    Article  PubMed  CAS  Google Scholar 

  • Kakinohana M, Kawabata T, Miyata Y, Sugahara K. Myogenic transcranial motor evoked potentials monitoring cannot always predict neurologic outcome after spinal cord ischemia in rats. J Thorac Cardiovasc Surg 2005;129:46–52.

    Article  PubMed  Google Scholar 

  • Kalkman CJ, Drummond JC, Ribberink AA. Low concentrations of isoflurane abolish motor evoked responses to transcranial electrical stimulation during nitrous oxide/opioid anesthesia in humans. Anesth Analg 1991;73:410–5.

    Article  PubMed  CAS  Google Scholar 

  • Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology 1992;76:502–9.

    Article  PubMed  CAS  Google Scholar 

  • Kalkman CJ, Ubags LH, Been HD, Swaan A, Drummond JC. Improved amplitude of myogenic motor evoked responses after paired transcranial electrical stimulation during sufentanil/nitrous oxide anesthesia. Anesthesiology 1995;83:270–6.

    Article  PubMed  CAS  Google Scholar 

  • Kano T, Sadanaga M, Sakamoto M, Higashi K, Matsumoto M. Effects of systemic cooling and rewarming on the evoked spinal cord potentials and local spinal cord blood flow in dogs. Anesth Analg 1994;78:897–904.

    Article  PubMed  CAS  Google Scholar 

  • Kano T, Sadanaga M, Matsumoto M, Ikuta Y, Sakaguchi H, Gotoh H, Miyauchi Y. Spinal function monitoring by evoked spinal cord potentials in aortic aneurysm surgery. J Anesth 1995;9:44–51.

    Article  Google Scholar 

  • Katayama Y, Tsubokawa T, Hirayama T, et al. Embolization of intramedullary spinal arteriovenous malformation fed by the anterior spinal artery with monitoring of the corticospinal motor evoked potential-case report. Neurol Med Chir. (Tokyo) 1991;31: 401–5.

    CAS  Google Scholar 

  • Katayama Y, Tsubokawa T, Yamamoto T, et al. Changes in the corticospinal MEP (D-wave) during microsurgical removal of intramedullary spinal cord tumors: experience in 16 cases. In: Jones SJ, Boyd S, Hetree M, Smith NJ, editors. Handbook of spinal cord monitoring. London: Kluwer Academic; 1993. p. 321–6.

    Google Scholar 

  • Kawaguchi M, Inoue S, Kakimoto M, Kitaguchi K, Furuya H, Morimoto T, Sakaki T. The effect of sevoflurane on myogenic motor-evoked potentials induced by single and paired transcranial electrical stimulation of the motor cortex during nitrous oxide/ketamine/fentanyl anesthesia. J Neurosurg Anesthesiol 1998;10:131–6.

    Article  PubMed  CAS  Google Scholar 

  • Kida Y, Takano H, Kitagawa H, Tsuji H. Effects of systemic cooling on conductive spinal evoked potentials. Spine 1994;19:341–5.

    Article  PubMed  CAS  Google Scholar 

  • Kieffer E, Fukui S, Chiras J, Koskas F, Bahnini A, Cormier E. Spinal cord arteriography: a safe adjunct before descending thoracic or thoracoabdominal aortic aneurysmectomy. J Vasc Surg 2002;35:262–8.

    Article  PubMed  Google Scholar 

  • Kocsis JD, Akiyama Y, Radtke C. Neural precursors as a cell sources to repair the demyelinated spinal cord. J Neurotrauma 2004;21:441–9.

    Article  PubMed  Google Scholar 

  • Kondo K, Harada H, Kaneko S, Tayama K, Kano T. Intraoperative monitoring of the conductive evoked spinal cord potentials under deep hypothermia. J Electrodiag Spinal Cord 1996;18:160–2.

    Google Scholar 

  • Kouchoukos NT, Masetti P, Rokkas CK, Murphy SF, Blackstone EH. Safety and efficacy of hypothermic cardiopulmonary bypass and circulatory arrest for operations on the descending thoracic and thoracoabdominal aorta. Ann Thorac Surg 2001;72:699–707; discussion 707–698.

    Article  PubMed  CAS  Google Scholar 

  • Kouchoukos NT, Masetti P, Rokkas CK, Murphy SF. Hypothermic cardiopulmonary bypass and circulatory arrest for operations on the descending thoracic and thoracoabdominal aorta. Ann Thorac Surg 2002;74:S1885–7; discussion S1892–88.

    Article  PubMed  Google Scholar 

  • Kumagai Y, Shimoji K, Honma T, Uchiyama S, Ishijima B, Hokari T, Fujioka H, Fukuda S, Ohama E Problems related to dorsal root entry zone lesions. Acta Neurochir 1992;117:135–42.

    Article  Google Scholar 

  • Kunihara T, Shiiya N, Yasuda K. Strategy for spinal cord protection during thoracoabdominal aortic surgery. Kyobu Geka 2004;57:319–24.

    PubMed  CAS  Google Scholar 

  • Kuniyoshi Y, Koja K, Miyagi K, Shimoji M, Uezu T, Arakaki K, Yamashiro S, Mabuni K, Senaha S, Nakasone Y. Prevention of postoperative paraplegia during thoracoabdominal aortic surgery. Ann Thorac Surg 2003;76:1477–84.

    Article  PubMed  Google Scholar 

  • Lake CL. Cardiovascular anesthesia. New York: Springer; 1984. p. 383–409.

    Google Scholar 

  • Legatt AD. Current practice of motor evoked potential monitoring: results of a survey. J Clin Neurophysiol 2002;19:454–60.

    Article  PubMed  Google Scholar 

  • Legatt A. Motor evoked potential monitoring. Am J END Technol 2004;44:223–43.

    Google Scholar 

  • Levy WJ, Grundy BL, Smith NT. Monitoring the electroencephalogram and evoked potentials during anesthesia. In: Saidman LJ, Smith NT, editors. Monitoring in anesthesia. Boston: Butterworth; 1984. p. 227–67.

    Google Scholar 

  • Levy WJ Jr. Clinical experience with motor and cerebellar evoked potential monitoring. Neurosurgery 1987;20:169–82.

    PubMed  Google Scholar 

  • Lips J, de Haan P, de Jager SW, Vanicky I, Jacobs MJ, Kalkman CJ. The role of transcranial motor evoked potentials in predicting neurologic and histopathologic outcome after experimental spinal cord ischemia. Anesthesiology 2002;97:183–91.

    Article  PubMed  Google Scholar 

  • Lyon R, Lieberman JA, Grabovac MT, Hu S. Strategies for managing decreased motor evoked potential signals while distracting the spine during correction of scoliosis. J Neurosurg Anesthesiol 2004;16:167–70.

    Article  PubMed  Google Scholar 

  • MacDonald DB. Current practice of motor evoked potential monitoring: Results of a survey. J Clin Neurophysiol 2002;19:454–60.

    Article  Google Scholar 

  • MacDonald DB. Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 2002;19:416–29.

    Article  PubMed  Google Scholar 

  • MacDonald DB, Janusz M. An approach to intraoperative neurophysiologic monitoring of thoracoabdominal aneurysm surgery. J Clin Neurophysiol 2002;19:43–54.

    Article  PubMed  Google Scholar 

  • MacDonald DB, Al Zayed Z, Khoudeir I, et al. Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine 2003;28:194–203.

    Article  PubMed  Google Scholar 

  • Macon JB, Poletti CE, Seet WH, Ojemann RG, Zervas NT. Conducted somatosensory evoked potentials during spinal surgery. Part 2: Clinical applications. J Neurosurg 1982;57:354–9.

    PubMed  CAS  Google Scholar 

  • Marcus ML, Heistad DD, Ehrhardt JC, Abboud FM. Regulation of total and regional spinal cord blood flow. Circ Res 1977;41:128–34.

    PubMed  CAS  Google Scholar 

  • Maruyama Y, Shimoji K, Fujioka H, Takada T, Endoh H. Brain and spinal cord monitoring by multispatial and multimodal evoked potentials during aortic surgery. In: Ducker TB, Brown RH, editors. Neurophysiology and standards of spinal cord monitoring. New York: Springer; 1988. p. 177–87.

    Google Scholar 

  • Mawad ME, Rivera V, Crawford S, Ramirez A, Breitbach W. Spinal cord ischemia after resection of thoracoabdominal aortic aneurysms: MR findings in 24 patients. Am J Neuroradiol 1990;11:987–91.

    PubMed  CAS  Google Scholar 

  • McDonald JW, Becker D, Holekamp TF, Howard M, Liu S, Lu A, Platik MM, Qu Y, Stewart T, Vadivelu S. Repair of the injured spinal cord and the potential of embryonic stem cell transplantation. J Neurotrauma 2004;21:383–93.

    Article  PubMed  Google Scholar 

  • McPherson RW, Levitt RC. Etomidate augmentation of scalp recorded somatosensory waves: time course, reproducibility, and dose effect. In: Shimoji K, Kurokawa T, Tamaki T, Willis WD Jr, editors. Spinal cord monitoring and electrodiagnosis. Berlin: Springer; 1991. p. 163–70.

    Google Scholar 

  • McPherson RW, Mahla M, Johnson R, Traystman RJ. Effects of enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials during fentanyl anesthesia. Anesthesiology 1985;62:626–33.

    PubMed  CAS  Google Scholar 

  • Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature 1980;285:227.

    Article  PubMed  CAS  Google Scholar 

  • Meylaerts SA, de Haan P, Kalkman CJ, Lips J, De Mol BA, Jacobs MJ. The influence of regional spinal cord hypothermia on transcranial myogenic motor-evoked potential monitoring and the efficacy of spinal cord ischemia detection. J Thorac Cardiovasc Surg 1999;118:1038–45.

    Article  PubMed  CAS  Google Scholar 

  • Meylaerts SA, Jacobs MJ, van Iterson V, de Haan P, Kalkman CJ. Comparison of transcranial motor evoked potentials and somatosensory evoked potentials during thoracoabdominal aortic aneurysm repair. Ann Surg 1999;230:742–9.

    Article  PubMed  CAS  Google Scholar 

  • Minahan RE, Sepkuty JP, Lesser RP, Sponseller PD, Kostuik JP. Anterior spinal cord injury with preserved neurogenic ‘motor’ evoked potentials. Clin Neurophysiol 2001;112:1442–50.

    Article  PubMed  CAS  Google Scholar 

  • Mishima Y, Niiyama S, Kano T. CSF temperature monitoring under deep hypothermia with extracorporeal circulation. In: Kano T, editor. Proceedings of 3rd Japanese SNACC. Kurume: Shinkou; 1999. p. 46–8.

    Google Scholar 

  • Morota N, Deletis V, Constantini S, et al. The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery 1997;41:1327–36.

    Article  PubMed  CAS  Google Scholar 

  • Murkin JM. Perioperative multimodality neuromonitoring: an overview. Semin Cardiothorac Vasc Anesth 2004;8:167–171.

    Article  PubMed  Google Scholar 

  • Nashold BS Jr, Ostdahl RH. Dorsal root entry zone lesions for pain relief. J Neurosurg 1979;51:59–69.

    PubMed  Google Scholar 

  • Nashold BS Jr, Urban B, Zorub DS. Phantom relief by focal destruction of substantia gelatinosa of Rolando. In: Bonica JJ, Albe-Fessard D, editors. Advances in pain research and therapy, vol. 1. New York: Raven; 1976. p. 959–63.

    Google Scholar 

  • Nashold BS Jr, Ovelmen-Levitt J, Sharpe R, Higgins AC. Intraoperative evoked potentials recorded in man directly from dorsal roots and spinal cord. J Neurosurg 1985;62:680–93.

    PubMed  Google Scholar 

  • Owen JH, Laschinger J, Bridwell K, Shimon S, Nielsen C, Dunlap J, Kain C. Sensitivity and specificity of somatosensory and neurogenic-motor evoked potentials in animals and humans. Spine 1988;13:1111–8.

    Article  PubMed  CAS  Google Scholar 

  • Paton HD, Amassian VE. The pyramidal tract: its excitation and functions. In: Handbook of physiology: neurophysiology. Washington: Physiological Society; 1960. p. 837–61.

    Google Scholar 

  • Pechstein U, Cedzich C, Nadstawek J, et al. Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery 1996a;39:335–43.

    Article  PubMed  CAS  Google Scholar 

  • Pechstein U, Cedzich C, Nadstawek J, et al. Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery 1996b;39:335–43.

    Article  PubMed  CAS  Google Scholar 

  • Pechstein U, Nadstawek J, Zentner J, Schramm J. Isoflurane plus nitrous oxide versus propofol for recording of motor evoked potentials after high frequency repetitive electrical stimulation. Electroencephalogr Clin Neurophysiol 1998;108:175–81.

    Article  PubMed  CAS  Google Scholar 

  • Prestor B, Zgur T, Dolenc VV. Subpial spinal evoked potentials in patients undergoing junctional dorsal root entry zone coagulation for pain relief. Acta Neurochir (Wien) 1989;101:56–62.

    Article  CAS  Google Scholar 

  • Rectenwald JE, Huber TS, Martin TD, Ozaki CK, Devidas M, Welborn MB, Seeger JM. Functional outcome after thoracoabdominal aortic aneurysm repair. J Vasc Surg 2002;35:640–7.

    Article  PubMed  Google Scholar 

  • Reuter DG, Tacker WA, Jr., Badylak SF, Voorhees WD 3rd, Konrad PE. Correlation of motor-evoked potential response to ischemic spinal cord damage. J Thorac Cardiovasc Surg 1992;104:262–72.

    PubMed  CAS  Google Scholar 

  • Safi HJ, Campbell MP, Miller CC 3rd, Iliopoulos DC, Khoynezhad A, Letsou GV, Asimacopoulos PJ. Cerebral spinal fluid drainage and distal aortic perfusion decrease the incidence of neurological deficit: the results of 343 descending and thoracoabdominal aortic aneurysm repairs. Eur J Vasc Endovasc Surg 1997a;14:118–24.

    Article  PubMed  CAS  Google Scholar 

  • Safi HJ, Miller CC 3rd, Azizzadeh A, Iliopoulos DC. Observations on delayed neurologic deficit after thoracoabdominal aortic aneurysm repair. J Vasc Surg 1997b;26:616–22.

    Article  PubMed  CAS  Google Scholar 

  • Safi HJ, Campbell MP, Ferreira ML, Azizzadeh A, Miller CC. Spinal cord protection in descending thoracic and thoracoabdominal aortic aneurysm repair. Semin Thorac Cardiovasc Surg 1998;10:41–4.

    PubMed  CAS  Google Scholar 

  • Safi HJ, Miller CC 3rd, Huynh TT, Estrera AL, Porat EE, Winnerkvist AN, Allen BS, Hassoun HT, Moore FA. Distal aortic perfusion and cerebrospinal fluid drainage for thoracoabdominal and descending thoracic aortic repair: ten years of organ protection. Ann Surg 2003;238:372–80.

    PubMed  Google Scholar 

  • Sakamoto T, Kawaguchi M, Kakimoto M, Inoue S, Takahashi M, Furuya H. The effect of hypothermia on myogenic motor-evoked potentials to electrical stimulation with a single pulse and a train of pulses under propofol/ketamine/fentanyl anesthesia in rabbits. Anesth Analg 2003;96:1692–7.

    Article  PubMed  CAS  Google Scholar 

  • Samra SK, Vanderzant CW, Domer PA, Sackellares JC. Differential effects of isoflurane on human median nerve somatosensory evoked potentials. Anesthesiology 1987;66:29–35.

    Article  PubMed  CAS  Google Scholar 

  • Schonle PW, Isenberg C, Crozier TA, Dressler D, Machetanz J, Conrad B. Changes of transcranially evoked motor responses in man by midazolam, a short acting benzodiazepine. Neurosci Lett 1989;101:321–4.

    Article  PubMed  CAS  Google Scholar 

  • Seyal M, Mull B. Mechanisms of signal change during intraoperative somatosensory evoked potential monitoring of the spinal cord. J Clin Neurophysiol 2002;19:409–15.

    Article  PubMed  Google Scholar 

  • Shimoji K, Higashi H, Kano T. Epidural recording of spinal electrogram in man. Electroencephalogr Clin Neuropohysiol 1971;30:236–9.

    Article  CAS  Google Scholar 

  • Sindou M. Etude de la jonction radiculomédullaire postérieure. La radicellotomie postérieure sélective dans la chirurgie de la douleur. Lyon: Medical Thesis; 1972.

    Google Scholar 

  • Spanish Society of Clinical Neurophysiology. A practical guide to carrying out neurophysiological monitoring in spine surgery. Rev Neurol 2004;38:879–85.

    Google Scholar 

  • Svensson LG, Crawford ES. Techniques for dissection involving the distal aorta. In: Svensson LG, Crawford ES, editors. Cardiovascular and vascular disease of the aorta. Philadelphia: Saunders; 1997. p. 359–70.

    Google Scholar 

  • Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ. Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg 1993;17:357–68; discussion 368–70.

    Article  PubMed  CAS  Google Scholar 

  • Taira Y, Marsala M. Effect of proximal arterial perfusion pressure on function, spinal cord blood flow, and histopathologic changes after increasing intervals of aortic occlusion in the rat. Stroke 1996;27:1850–8.

    PubMed  CAS  Google Scholar 

  • Tamaki T, Tsuji H, Inoue S, Kobayashi M. The prevention of iatrogenic spinal cord injury utilizing the evoked spinal cord potentials. Int Orthop 1981;4:313–17.

    PubMed  CAS  Google Scholar 

  • Tamaki T, Noguchi T, Takano H, Tsuji H, Nakagawa T, Imai K, Inoue S. Spinal cord monitoring as a clinical utilization of the spinal evoked potentials. Clin Orthop 1984;184:58–64.

    PubMed  Google Scholar 

  • Taniguchi M, Nadstawek J, Langenbach U, Bremer F, Schramm J. Effects of four intravenous anesthetic agents on motor evoked potentials elicited by magnetic transcranial stimulation. Neurosurgery 1993;33:407–15; discussion 415.

    Article  PubMed  CAS  Google Scholar 

  • Thees C, Scheufler KM, Nadstawek J, Pechstein U, Hanisch M, Juntke R, Zentner J, Hoeft A. Influence of fentanyl, alfentanil, and sufentanil on motor evoked potentials. J Neurosurg Anesthesiol 1999;11:112–8.

    PubMed  CAS  Google Scholar 

  • Toleikis JR, Skelly JP, Carlvin AO, Burkus JK. Spinally elicited peripheral nerve responses are sensory rather than motor. Clin Neurophysiol 2000;111:736–42.

    Article  PubMed  CAS  Google Scholar 

  • Tsuyama N, Tsuzuki N, Kurokawa T, Imai T. Clinical application of spinal cord action potential measurement. Int Orthop 1978;2:39–46.

    Article  Google Scholar 

  • Uezu T, Koja K, Kuniyoshi Y, Miyagi K, Shimoji M, Arakaki K, Yamashiro S, Mabuni K, Senaha S. Blood distribution to the anterior spinal artery from each segment of intercostals and lumbar arteries. J Cardiovasc Surg 2003;44:637–45.

    CAS  Google Scholar 

  • van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, Langemeijer HJ, de Boer A, Boezeman EH. Within-patient variability of myogenic motor-evoked potentials to multipulse transcranial electrical stimulation during two levels of partial neuromuscular blockade in aortic surgery. Anesth Analg 1999;88:22–7.

    Article  PubMed  Google Scholar 

  • Vauzelle C, Stagnara P, Jouvinroux P. Functional monitoring of spinal cord activity during spinal surgery. Clin Orthop 1973;93:173–8.

    Article  PubMed  Google Scholar 

  • Yamamoto T, Katayama Y, Tsubokawa T, et al. Experimental study of the origin of transcranially evoked descending spinal cord potentials. In: Shimoji K, Kurokawa T, Tamaki T, Willis WD, editors. Spinal cord monitoring and electrodiagnosis. Berlin: Springer; 1991. p. 36–42.

    Google Scholar 

  • Zentner J. Noninvasive motor evoked potential monitoring during neurosurgical operations on the spinal cord. Neurosurgery 1989;24:709–12.

    Article  PubMed  CAS  Google Scholar 

  • Zentner J, Ebner A. Nitrous oxide suppresses the electromyographic response evoked by electrical stimulation of the motor cortex. Neurosurgery 1989;24:60–2.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Fujioka, H. et al. (2006). Monitoring by SCPs During Surgical Operations. In: Shimoji, K., Willis, W.D. (eds) Evoked Spinal Cord Potentials. Springer, Tokyo. https://doi.org/10.1007/4-431-30901-2_12

Download citation

  • DOI: https://doi.org/10.1007/4-431-30901-2_12

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-24026-6

  • Online ISBN: 978-4-431-30901-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics