Skip to main content
  • 618 Accesses

Summary

Bone marrow cells are advantageous for exogenous cell transplantation to treat end-stage heart failure regard to autologous source, no ethical issue, capacity to regenerate myocardium, induction of angiogenesis. Based on basic research showing regenerating myocardium using bone marrow, clinical trials in several places were conducted like gold rush in recent years. Endogenous-stem cell therapy may be also a promising strategy. Self-renewal of myocardium may be partly derived from bone marrow and the myocardium itself, which was thought to be a terminally differentiated organ. The past new technologies have been developed and their use expanded despite a lack of concrete evidence regarding their effectiveness. However, we still have a lot of unanswered questions including optimal cell population, cell density, and exact mechanism responsible for the improvement of cardiac dysfunction, fate of fusioned cells, cardiac environmental factors, regulation of proliferation and differentiation of transplanted cells, efficient cell tracking method in human. People involved in this field must be careful as they proceed, as inappropriately designed research might ruin the future of the field of regenerative medicine. Cell-based therapy will continue to expand at a rapid rate over the next decade. Whether the benefits of cell-based therapy are evident in the future remains to be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Asahara T, Masuda H, Takahashi T, Kaka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228

    PubMed  CAS  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der ZR, Li T, Witzenbichler B, Schatteman G, Isner, JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  PubMed  CAS  Google Scholar 

  • Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM. (2002) Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation Dec 10; 106(24):3009–17

    Article  PubMed  Google Scholar 

  • Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Aicher A, et al.(2003) Trans-differentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107(7): 1024–32

    Article  PubMed  Google Scholar 

  • Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428(6983):668–73

    Article  PubMed  CAS  Google Scholar 

  • Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N. Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344(23): 1750–1757

    Article  PubMed  CAS  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P.(2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–76

    Article  PubMed  CAS  Google Scholar 

  • Bittner R E, Schofer C, Weipoltshammer K, Ivanova S, Streubel B, Hauser E, Freilinger M, Hoger H., Elbe-Burger A, Wachtler F (1999) Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol (Berl) 199(5): 391–396

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Tomita S, Nakatani T, Fukuhara S, Hanatani A, Ohtsu Y, Ishida M, Yutani C, Miyatake K, Kitamura S (2004) A Novel application of myocardial contrast echocardiography to evaluate angiogenesis by autologous bone marrow cell transplantation in chronic ischemic pig model. J Am Coll Cardiol 43(7):1299–1305

    Article  PubMed  Google Scholar 

  • Condorelli G, Borello U, De Angelis L, Latronico M, Sirabella D, Coletta M, Galli R, Balconi G, Follenzi A, Frati G, Cusella De Angelis MG, Gioglio L, Amuchastegui S, Adorini L, Naldini L, Vescovi A, Dejana E, Cossu G (2001) Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci USA 98(19):10733–38

    Article  PubMed  CAS  Google Scholar 

  • Fukuhara S, Tomita S, Ohtsu Y, Ishida M, Yutani C, Kitamura S, Nakatani T (2002) G-CSF Promoted Bone Marrow Cells to Migrate into Infarcted Heart and Differentiate into Cardiomyocytes. Circulation 106[suppl II]:A1870

    Google Scholar 

  • Fukuhara S, Tomita S, Nakatani T, Yamashiro S, Morisaki T, Yutani C, Kitamura S (2003) Direct cell-to-cell interaction of cardiomyocytes is a key for bone marrow stromal cells to go into cardiac lineage in vitro. J Thorac Cardivasc Surg 125:1470–1480

    Article  Google Scholar 

  • Fukuhara S, Tomita S, Nakatani T, Yutani C, Kitamura S (2004) Endogenous bone marrow-derived stem cells reconstituted myocardium only in the small proportion after acute myocardial infarction. J Heart Lung Transplant (in press)

    Google Scholar 

  • Hamamoto M, Tomita S, Nakatani T, Yutani C, Yamashiro S, Sueda T, Yagihara T, Kitamura S (2004) Granurocyte-colony stimulating factor directly enhances the proliferation of human adult heart cells derived from idiopathic dilated cardiomyopathy. J Heart Lung Transplant (in press)

    Google Scholar 

  • Hamano K, Li TS, Kobayashi T, Hirata K, Yano M, Kohno M, Matsuzaki M (2002) Therapeutic angiogenesis induced by local autologous bone marrow cell implantation. Ann Thorac Surg 73(4):1210–15

    Article  PubMed  Google Scholar 

  • Hosenpud JD, Bennett LE, Keck BM, Fiol B, Boucek MM, Novick RJ (1998) The Registry of the International Society for Heart and Lung Transplantation: fifteenth official report-1998. J Heart Lung Transplant 17(7):656–668

    PubMed  CAS  Google Scholar 

  • Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman M L, Michael LH, Hirschi KK, Goodell MA (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107(11):1395–1402.

    Article  PubMed  CAS  Google Scholar 

  • Kang HJ, Kim HS, Zhang SY, Park KW, Cho HJ, Koo BK, Kim YJ, Soo Lee D, Sohn DW, Han KS, Oh BH, Lee MM, Park YB. (2004) Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocytecolony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomized clinical trial. Lancet 363(9411):751–756

    Article  PubMed  CAS  Google Scholar 

  • Laflamme MA, Myerson D, Saffitz JE, Murry CE (2002) Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 90(6):634–640

    Article  PubMed  CAS  Google Scholar 

  • Li RK, Jia ZQ, Weisel RD, Merante F, Mickle DA (1999) Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J Mol Cell Cardiol 31(3):513–522

    Article  PubMed  CAS  Google Scholar 

  • Li RK, Jia ZQ, Weisel RD, Mickle DA, Zhang J, Mohabeer MK, Rao V, Ivanov J (1996) Cardiomyocyte transplantation improves heart function. Ann Thorac Surg. 62(3):654–660

    Article  PubMed  CAS  Google Scholar 

  • Li RK, Mickle DA, Weisel RD, Mohabeer MK, Zhang J, Rao V, Li G, Merante F, Jia ZQ (1997) Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 96(9 Suppl): II-176–186

    Google Scholar 

  • Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6(11):1282–1286

    Article  PubMed  CAS  Google Scholar 

  • Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103(5): 697–705

    PubMed  CAS  Google Scholar 

  • Menasche P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, et al. (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41(7):1078–83

    Article  PubMed  Google Scholar 

  • Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ. (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983):664–8

    Article  PubMed  CAS  Google Scholar 

  • Noishiki Y, Tomizawa Y, Yamane Y, Matsumoto A (1996) Autocrine angiogenic vascular prosthesis with bone marrow transplantation. Nat Med 2(1):90–93

    Article  PubMed  CAS  Google Scholar 

  • Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD. (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100(21):12313–8

    Article  PubMed  CAS  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001a) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705

    Article  PubMed  CAS  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. (2001b). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98(18):10344–49

    Article  PubMed  CAS  Google Scholar 

  • Reinecke H, MacDonald G H, Hauschka SD, Murry CE (2000) Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J Cell Biol 149(3):731–740

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Kuang JQ, Bittira B, Al Khaldi A, Chiu RC (2002) Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg 74(1):19–24

    Article  PubMed  Google Scholar 

  • Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata, Y., and Nagai, R. (2002). Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8(4):403–409

    Article  PubMed  CAS  Google Scholar 

  • Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K, Duan J, Imaizumi T (2001) Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 103(6):897–903

    PubMed  CAS  Google Scholar 

  • Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15):1913–1918

    Article  PubMed  Google Scholar 

  • Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360(9331):427–435

    Article  PubMed  Google Scholar 

  • Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, Glower DD, Kraus WE (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med. 4(8):929–933

    Article  PubMed  CAS  Google Scholar 

  • Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 416(6880): 542–545

    Article  PubMed  CAS  Google Scholar 

  • Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100(19 Suppl):II247–256

    PubMed  CAS  Google Scholar 

  • Tomita S, Nakatani T, Fukuhara S, Morisaki T, Yutani C, Kitamura S (2002) Bone marrow stromal cells contract synchronously with cardiomyocytes in a coculture system. Jpn J Thorac Cardiovasc Surg 50(8):321–324

    Article  PubMed  Google Scholar 

  • Tomita S, Ishida M, Nakatani T, Fukuhara S, Hisashi Y, Ohtsu Y, Suga M, Yutani C, Yagihara T, Yamada K, Kitamura S (2004) Bone Marrow is a Source of Regenerated Cardiomyocytes in Doxorubicin-Induced-Cardiomyopathy, and GCSF Enhances Migration of Bone Marrow Cells and Attenuates Cardiotoxicity of Doxorubicin Under Electronmicroscopy. J Heart Lung Transplant 23(5):577–584

    Article  PubMed  Google Scholar 

  • Tse H F, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP (2003) Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361(9351):47–49

    Article  PubMed  Google Scholar 

  • Wang JS, Shum-Tim D, Galipeau J, Chedrawy E, Eliopoulos N, Chiu RC (2000) Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 120(5):999–1006

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Tomita, S., Nakatani, T. (2005). Regeneration of Myocardium Using Bone Marrow Cells. In: Mori, H., Matsuda, H. (eds) Cardiovascular Regeneration Therapies Using Tissue Engineering Approaches. Springer, Tokyo. https://doi.org/10.1007/4-431-27378-6_3

Download citation

  • DOI: https://doi.org/10.1007/4-431-27378-6_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-23925-3

  • Online ISBN: 978-4-431-27378-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics