Skip to main content

Cryptochrome Overview

  • Chapter
Light Sensing in Plants
  • 1302 Accesses

Abstract

Cryptochromes were first discovered in Arabidopsis where a mutation conferring a deficiency in blue light signaling was shown to reside in a gene encoding a protein with similarities to photolyases ([Ahmad and Cashmore 1993]).The latter are flavoproteins that mediate the repair of pyrimidine dimers, generated as a result of exposure of DNA to UV-B light ([Sancar 2003]). This DNA repair activity of photolyases is dependent on irradiation with blue or UV-A light and results from transfer of an electron from the photolyase-bound flavin to the damaged pyrimidine dimer, which then undergoes isomerization to yield the monomer; the electron is returned to the photolyase. In these respects photolyases are photoreceptors mediating blue light-dependent redox reactions, and in view of the similarities between the Arabidopsis cry1 gene and photolyases it was proposed that CRY1 was also a blue light photoreceptor. Cryptochromes lack the DNA repair activity of photolyases and, at least in plants, cryptochromes are characterized by a distinguishing C-terminal extension ([Cashmore 2003]). Cryptochromes have now been characterized for several additional plant species including tomato ([Ninu et al 1999],[Weller et al 2001]) and rice ([Matsumoto et al 2003]). In both cases, as in Arabidopsis, these cryptochromes apparently play a role in blue light-mediated de-etiolation and photomorphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366: 162–166

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1: 939–948

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Grancher N, Heil M, Black RC, Giovani B, Galland P, Lardemer D (2002) Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis. Plant Physiol 129: 774–785

    Article  PubMed  CAS  Google Scholar 

  • Bouly JP, Giovani B, Djamei A, Mueller M, Zeugner A, Dudkin EA, Batschauer A, Ahmad M (2003) Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1. Eur J Biochem 270: 2921–2928

    Article  PubMed  CAS  Google Scholar 

  • Brudler R, Hitomi K, Daiyasu H, Toh H, Getzoff ED (2003) Identification of a new cryptochrome class. Structure, function, and evolution. Mol Cell 11: 59–67

    Article  PubMed  CAS  Google Scholar 

  • Cashmore AR (2003) Cryptochromes: enabling plants and animals to determine circadian time. Cell 114: 537–543

    Article  PubMed  CAS  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: Blue light receptors for plants and animals. Science 284: 760–765

    Article  PubMed  CAS  Google Scholar 

  • Deininger W, Kroger P, Hegemann U, Lottspeich F, Hegemann P (1995) Chlamyrhodopsin represents a new type of sensory photoreceptor. EMBO J 14: 5849–5858

    PubMed  CAS  Google Scholar 

  • Emery P, So WV, Kaneko M, Hall JC, Rosbash M (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95: 669–679

    Article  PubMed  CAS  Google Scholar 

  • Folta KM, Spalding EP (2001) Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J 26: 471–478

    Article  PubMed  CAS  Google Scholar 

  • Giovani B, Byrdin M, Ahmad M, Brettel K (2003) Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat Struct Biol 10: 489–490

    Article  PubMed  CAS  Google Scholar 

  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424: 75–81

    Article  CAS  Google Scholar 

  • Helfrich-Forster C, Winter C, Hofbauer A, Hall JC, Stanewsky R (2001) The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30: 249–261

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi T, Kadota A, Hasebe M, Wada M (2002) Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. Plant Cell 14: 373–386

    Article  PubMed  CAS  Google Scholar 

  • Kanegae T, Wada M (1998) Isolation and characterization of homologues of plant blue-light photoreceptor (cryptochrome) genes from the fern Adiantum capillus-veneris. Mol Gen Genet 259: 345–353

    Article  PubMed  CAS  Google Scholar 

  • Kleine T, Lockhart P, Batschauer A (2003) An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J 35: 93–103

    Article  PubMed  CAS  Google Scholar 

  • Li YF, Heelis PF, Sancar A (1991) Active site of DNA photolyase: Tryptophan-306 is the intrinsic hydrogen atom donor essential for flavin radical photoreduction and DNA repair in vitro. Biochemistry 30: 6322–6329

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Robertson DE, Ahmad M, Raibekas AA, Schuman Jorns M, Dutton PL, Cashmore AR (1995) Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269: 968–970

    Article  PubMed  CAS  Google Scholar 

  • Malhotra K, Sang-Tae K, Batschauer A, Dawut L, Sancar A (1995) Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry 34: 6892–6899

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto N, Hirano T, Iwasaki T, Yamamoto N (2003) Functional analysis and intracellular localization of rice cryptochromes. Plant Physiol 133: 1494–1503

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto Y, Sancar A (1998) Vitamin B2-based blue-light photoreceptors in the retino-hypothalamic tract as the photoactive pigments fr setting the circadian clocks in mammals. Proc Natl Acad Sci USA 95: 6097–6102

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Chory J (1998) Genetic interaction between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol 118: 27–35

    Article  PubMed  CAS  Google Scholar 

  • Ninu L, Ahmad M, Miarelli C, Cashmore AR, Giuliano G (1999) Cryptochrome 1 controls tomato development in response to blue light. Plant J 18: 551–556

    Article  PubMed  CAS  Google Scholar 

  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301: 525–527

    Article  PubMed  CAS  Google Scholar 

  • Parks BM, Cho MH, Spalding EP (1998) Two genetically separable phases of growth inhibition induced by blue light in Arabidopsis seedlings. Plant Physiol 118: 609–615

    Article  PubMed  CAS  Google Scholar 

  • Poppe C, Sweere U, Drumm-Herrel H, Schäfer E (1998) The blue light receptor cryptochrome 1 can act independently of phytochrome A and B in Arabidopsis thaliana. Plant J 16: 465–471

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418: 935–941

    Article  PubMed  CAS  Google Scholar 

  • Sancar A (2003) Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103: 2203–2237

    Article  PubMed  CAS  Google Scholar 

  • Shalitin D, Yang H, Mockler TC, Maymon M, Guo H, Whitelam GC, Lin C (2002) Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417: 763–767

    Article  PubMed  CAS  Google Scholar 

  • Shalitin D, Yu X, Maymon M, Mockler T, Lin C (2003) Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell 15: 2421–2429

    Article  PubMed  CAS  Google Scholar 

  • Small GD, Min B, Lefebvre PA (1995) Characterization of a Chlamydomonas reinhardtii gene encoding a protein of the DNA photolyase/blue light photoreceptor family. Plant Mol Biol 28: 443–454

    Article  PubMed  CAS  Google Scholar 

  • Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC (1998) The cry b mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95: 681–692

    Article  PubMed  CAS  Google Scholar 

  • Todo T (1999) Functional diversity of the DNA photolyase/blue light receptor family. Mutat Res 434: 89–97

    PubMed  CAS  Google Scholar 

  • van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker AP, van Leenen D, Buijs R, Bootsma D, Hoeijmakers JH, Yasui A (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398: 627–630

    Article  PubMed  Google Scholar 

  • Van Gelder RN (2002) Tales from the crypt(ochromes). J Biol Rhythms 17: 110–120

    Article  PubMed  Google Scholar 

  • Wang X, Iino M (1998) Interaction of cryptochrome 1, phytochrome, and ion fluxes in blue-light-induced shrinking of Arabidopsis hypocotyl protoplasts. Plant Physiol 117: 1265–1279

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ma LG, Li J, Zhao HY, Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294: 154–158

    Article  PubMed  CAS  Google Scholar 

  • Weissig H, Beck CF (1991) Action spectrum for the light-dependent step in gametic differentiation of Chlamydomonas reinhardtii. Plant Physiol 97: 118–121

    Article  PubMed  CAS  Google Scholar 

  • Weller JL, Perrotta G, Schreuder ME, van Tuinen A, Koornneef M, Giuliano G, Kendrick RE (2001) Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2. Plant J 25: 427–440

    Article  PubMed  CAS  Google Scholar 

  • Yang HQ, Tang RH, Cashmore AR (2001) The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13: 2573–2587

    Article  PubMed  CAS  Google Scholar 

  • Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y, Cashmore AR (2000) The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103: 815–827

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Yamada Science Foundation and Springer-Verlag Tokyo

About this chapter

Cite this chapter

Cashmore, A.R. (2005). Cryptochrome Overview. In: Wada, M., Shimazaki, Ki., Iino, M. (eds) Light Sensing in Plants. Springer, Tokyo. https://doi.org/10.1007/4-431-27092-2_13

Download citation

Publish with us

Policies and ethics