Skip to main content

Cadmium Bioaccumulation in Aquatic Oligochaetes Using a Biodynamic Model: A Review of Values of Physiological Parameters and Model Validation Using Laboratory and Field Bioaccumulation Data

  • Chapter
Reviews of Environmental Contamination and Toxicology Volume 243

Abstract

This study reviews certain physiological digestive parameters in the literature that could be used to predict tissue residues in aquatic oligochaetes using the biodynamic model. Predictions were evaluated with independently measured Cd bioaccumulation data in sediment bioassays and field oligochaetes. The parameter review focused on three species commonly used in ecotoxicity testing and bioaccumulation studies: Tubifex tubifex (Tt), Limnodrilus hoffmeisteri (Lh) and Lumbriculus variegatus (Lv). Median Ingestion rates (g g−1 d−1, dw) at unpolluted conditions were 7.8 (Tt), 24.5 (Lh) and 11.5 (Lv), while results were lower (1.7–2.4) at polluted conditions. Assimilation efficiencies ranged from 3.4–19.6% (Tt), 2.7–16.1% (Lh), and 10.9–25.6% (Lv). The biodynamic model accurately predicted Cd tissue concentration in T. tubifex exposed to spiked sediments in laboratory bioassays. Comparisons of predicted vs. measured Cd tissue concentration in bioassays or field aquatic oligochaetes suggest that the biodynamic model can predict Cd tissue concentration within a factor of five in 81.3% of cases, across a range of measured tissue concentrations from 0.1 to 100 μg Cd g−1 dw. Predictions can be refined by using physiological parameter values that have been measured under varying environmental conditions (e.g. temperature, dissolved oxygen). The model can underestimate tissue concentration by up to one order of magnitude when worms are exposed to highly contaminated sediments. Contrarily, predictions overestimate tissue concentration by up to two orders of magnitude when the measured Cd < 0.1 μg g−1 dw, although in most cases these predictions do not fail bioaccumulation-based risk assessments, using a tissue threshold value of 1.5 μg Cd g−1 dw.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiard-Triquet C (2009) Behavioral disturbances: the missing link between sub-organismal and supra-organismal responses to stress? Prospects based on aquatic research. Hum Ecol Risk Assess 15(1):87–110

    CAS  Google Scholar 

  • Ankley GT, Benoit DA, Balough JC, Reynoldson TB, Day KE, Hoke RA (1994) Evaluation of potential confounding factors in sediment toxicity tests with three freshwater benthic invertebrates. Environ Toxicol Chem 13:627–635

    CAS  Google Scholar 

  • Appleby AG, Brinkhurst RO (1970) Defecation rate of three tubificid oligochaetes found in the sediment of Toronto Harbour, Ontario. J Fish Res Bd Canada 27:1971–1982

    Google Scholar 

  • ASTM (2005) Standard test method for measuring the toxicity of sediments-associated contaminants with freshwater invertebrates. American Society for Testing and Materials—ASTM, Philadelphia, PA. E1706–05

    Google Scholar 

  • Aston RJ (1973) Field and experimental studies on the effects of a power station effluent on tubificidae (Oligochaeta, Annelida). Hydrobiologia 42:225–242

    Google Scholar 

  • Back H (1990) Epidermal uptake of Pb, Cd and Zn in tubificid worms. Oecologia 85:226–232

    Google Scholar 

  • Bettinetti R, Provini A (2002) Toxicity of 4-nonylphenol to Tubifex tubifex and Chironomus riparius in 28-day whole-sediment tests. Ecotoxicol Environ Saf 53:113–121

    CAS  Google Scholar 

  • Birtwell JK, Arthur DR (1980) The ecology of tubificids in the Thames Estuary with particular reference to Tubifex costatus (Claparède). In: Brinkhurst RO, Cook DG (eds) Aquatic oligochaete biology. Plenum Press, New York, pp 331–381

    Google Scholar 

  • Borgmann U, Norwood WP, Dixon DG (2008) Modelling bioaccumulation and toxicity of metal mixtures. Hum Ecol Risk Assess 14:266–289

    CAS  Google Scholar 

  • Bouchè ML, Habets F, Biagianti-Risbourg S, Vernet G (2000) Toxic effects and bioaccumulation of cadmium in the aquatic oligochaete Tubifex tubifex. Ecotoxicol Environ Saf 46:246–251

    Google Scholar 

  • Brinkhurst RO (1974) Factors mediating interspecific aggregation of tubificid oligochaetes. J Fish Res Bd Can 31:460–462

    Google Scholar 

  • Brinkhurst RO, Jamieson BGM (1971) The aquatic oligochaeta of the world. Oliver & Boyd, Edinburgh, p 860

    Google Scholar 

  • Brinkhurst RO, Austin MJ (1979) Assimilation by aquatic Oligochaeta. Int Rev Gesamten Hydrobiol 64:863–868

    Google Scholar 

  • Brinkhurst RO, Chua KE, Kaushik NK (1972) Interspecific interactions and selective feeding by tubificid oligochaetes. Limnol Oceanogr 17:122–133

    Google Scholar 

  • Cammen LM (1980) Ingestion rate: an empirical model for aquatic deposit feeders and detritivores. Oecologia 44:303–310

    Google Scholar 

  • Casado-Martinez MC, Smith BD, DelValls TA, Rainbow PS (2009a) Pathways of trace metal uptake in the lugworm Arenicola marina. Aquat Toxicol 92:9–17

    CAS  Google Scholar 

  • Casado-Martinez MC, Smith BD, DelValls TA, Luoma SN, Rainbow PS (2009b) Biodynamic modelling and the prediction of accumulated trace metal concentrations in the polychaete Arenicola marina. Environ Pollut 157:2743–2750

    CAS  Google Scholar 

  • Camusso M, Polesello S, Valsecchi S, Vignati DAL (2012) Importance of dietary uptake of trace elements in the benthic deposit-feeding Lumbriculus variegatus. Trends Anal Chem 36:103–112

    CAS  Google Scholar 

  • Casado-Martinez MC, Smith BD, Luoma SN, Rainbow PS (2010a) Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete Arenicola marina: A biodynamic modelling approach. Aquat Toxicol 98:34–43

    CAS  Google Scholar 

  • Casado-Martínez MC, Smith BD, Luoma SN, Rainbow PS (2010b) Metal toxicity in sediment-dwelling polychaete: Threshold body concentrations or overwhelming accumulation rates? Environ Pollut 158:3071–3076

    Google Scholar 

  • Chapman PM (2001) Utility and relevance of aquatic oligochaetes in Ecological Risk Assessment. Hydrobiologia 463:149–169

    Google Scholar 

  • Chekanovskaya OV (1962) Aquatic Oligochaeta of the USSRR. Akademiya Nauk SSRR, Moscow, USSR

    Google Scholar 

  • Ciutat A, Anschutz P, Gerino M, Boudou A (2005) Effects of bioturbation on cadmium transfer and distribution into freshwater sediment. Environ Toxicol Chem 24:1048–1058

    CAS  Google Scholar 

  • Coler RA, Gunner HB, Zuckermann BM (1968) Selective feeding of tubificids on bacteria. Nature 216:1143–1144

    Google Scholar 

  • Conover RJ (1966) Assimilation of organic matter by zooplankton. Limnol Oceanogr 11:338–345

    Google Scholar 

  • Curry JP, Schmidt O (2007) The feeding ecology of earthworms—a review. Pedobiologia 50:463–477

    Google Scholar 

  • Delmotte S, Meysman FJR, Ciutat A, Boudou A, Sauvage S, Gerino M (2007) Cadmium transport in sediments by tubificid bioturbation: an assessment of model complexity. Geochim Cosmochim Acta 71:844–862

    CAS  Google Scholar 

  • De Jonge M, Tipping E, Lofts S, Bervoets L, Blust R (2013) The use of invertebrate body burdens to predict ecological effects of metal mixtures in mining-impacted waters. Aquat Toxicol 142:294–302

    Google Scholar 

  • DEQ (2007) Guidance for assessing bioaccumulative chemicals of concern in sediment. Oregon Department of Environmental Quality, Cleanup Program, State of Oregon January 31, 2007; updated April 3, 2007

    Google Scholar 

  • Egeler P, Römbke J (2007) Oligochaeta (microdrile) worms in the environmental risk assessment of pesticides in the European Union. Acta Hydrobiol Sin 31(Suppl):151–162

    Google Scholar 

  • Fend SV, Liu Y, Steinmann D, Giere O, Barton HA, Luiszer F, Erséus C (2016) Limnodrilus sulphurensis n. sp., from a sulfur cave in Colorado, USA, with notes on the morphologically similar L. profundicola (Clitellata, Naididae, Tubificinae). Zootaxa 4066:451–468

    Google Scholar 

  • Fisher JA, Beeton AM (1975) The effect of dissolved oxygen on the burrowing behaviour of Limnodrilus hoffmeisteri (Oligochaeta). Hydrobiologia 47:273–290

    Google Scholar 

  • Gnaiger E, Staudigl J (1987) Aerobic metabolism and physiological responses of aquatic oligochaetes to environmental anoxia- Heat dissipation, oxygen consumption, feeding and defecation. Physiol Zool 60:659–678

    Google Scholar 

  • Giere O, Pfannkuche O (1982) Biology and ecology of marine Oligochaeta, a review. In: Barnes M (ed) Oceanography and marine biology: an annual review, 20. Aberdeen University Press, Aberdeen, pp 173–308

    Google Scholar 

  • Gillis PL, Diener LC, Reynoldson TB, Dixon DG (2002) Cadmium induced production of a metallothionein-like protein in Tubifex tubifex (Oligochaeta) and Chironomus riparius (Diptera): correlation with whole body (reproduction and growth) endpoints of toxicity. Environ Toxicol Chem 21:1836–1844

    CAS  Google Scholar 

  • Gillis PL, Dixon DG, Borgmann U, Reynoldson TB (2004) Uptake and depuration of cadmium, nickel, and lead in laboratory-exposed Tubifex tubifex and corresponding changes in the concentration of a metallothionein-like protein. Environ Toxicol Chem 23:76–78

    CAS  Google Scholar 

  • Hare L, Tessier A, Warren L (2001) Cadmium accumulation by invertebrates living at the sediment-water interface. Environ Toxicol Chem 20:880–889

    CAS  Google Scholar 

  • Harper RM, Fry JC, Learner MA (1981a) A bacteriological investigation to elucidate the feeding biology of Nais variabilis (Oligochaeta, Naididae). Freshw Biol 11:227–237

    Google Scholar 

  • Harper RM, Fry JC, Learner MA (1981b) Digestion of bacteria by Nais variabilis (Oligochaeta) as established by autoradiography. Oikos 36:211–218

    CAS  Google Scholar 

  • Hernández M, Egea JR (1987) Heavy metal contamination in Guadalix River (in Madrid’s industrial belt area). II. Heavy metals in sediments and their bioassimilation by tubificids. Heavy Metal Environ Int Conf 2:172–174

    Google Scholar 

  • Hunting ER, Whatley MH, van der Geest HG, Mulder C, Kraak MHS, Breure AM, Admiraal W (2012) Invertebrate footprints on detritus processing, bacterial community structure, and spatiotemporal redox profiles. Freshwater Sci 31:724–732

    Google Scholar 

  • Juget J (1979) La texture granulometrique des sediments et le regime alimentaire des oligochètes limnicoles. Hydrobiologia 65:145–154

    Google Scholar 

  • Karickhoff SW, Morris SW (1985) Impact of tubificid oligochaetes on pollutant transport in bottom sediments. Environ Sci Technol 19:51–56

    Google Scholar 

  • Keilty TJ, White DS, Landrum PF (1988) Short-term lethality and sediment avoidance assays with endrin-contaminated sediment and two oligochaetes from Lake Michigan. Arch Environ Contam Toxicol 17:95–102

    CAS  Google Scholar 

  • Klump JV, Krezoski JR, Smith ME, Kaster JL (1987) Dual tracer studies of the assimilation of an organic contaminant from sediments by deposit feeding oligochaetes. Can J Fish Aquat Sci 44:1574–1583

    CAS  Google Scholar 

  • Kosiorek D (1974) Development of Tubifex tubifex Müll. in experimental culture. Pol Arch Hydrobiol 21:411–422

    Google Scholar 

  • Krantzberg G (1994) Spatial and temporal variability in metal bioavailability and toxicity of sediment from Hamilton Harbour, Lake Ontario. Environ Toxicol Chem 13:1685–1698

    CAS  Google Scholar 

  • Kukkonen J, Landrum PF (1995) Measuring assimilation efficiencies for sediment-bound PAH and PCB congeners by benthic organisms. Aquat Toxicol 32:75–92

    CAS  Google Scholar 

  • Lawrence MAM, Davies NA, Edwards PA, Taylor MG, Simkiss K (2000) Can adsorption isotherms predict sediment bioavailability? Chem 41:1091–1100

    CAS  Google Scholar 

  • Leppänen M (1995) The role of feeding behaviour in bioaccumulation of organic chemicals in benthic organisms. Ann Zool Fenn 32:247–255

    Google Scholar 

  • Leppänen MT, Kukkonen JVK (1998) Factors affecting feeding rate, reproduction and growth of an oligochaete Lumbriculus variegatus. Hydrobiologia 377:183–194

    Google Scholar 

  • Lobo H, Espindola ELG (2014) Branchiura sowerbyi Beddard, 1892 (Oligochaeta: Naididae) as a test species in ecotoxicology bioassays: a review. Zoosymposia 9:059–069

    Google Scholar 

  • Lopez GR, Levinton JS (1987) Ecology of deposit-feeding animals in marine sediments. Q Rev Biol 62:235–260

    Google Scholar 

  • Lu X, Reible DD, Fleeger JW (2004) Bioavailability and assimilation of sediment-associated benzo[a]pyrene by Ilyodrilus templetoni (Oligochaeta). Environ Toxicol Chem 23:57–64

    Google Scholar 

  • Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921–1931

    CAS  Google Scholar 

  • Maestre Z, Martinez-Madrid M, Rodriguez P (2009) Monitoring the sensitivity of the oligochaete Tubifex tubifex in laboratory cultures using three toxicants. Ecotoxicol Environ Saf 72:2083–2089

    CAS  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    CAS  Google Scholar 

  • Martinez-Madrid M, Rodriguez P, Pérez-Iglesias JI, Navarro E (1999) Sediment toxicity bioassays for assessment of contaminated sites in the Nervión River (Northern Spain). 2. Tubifex tubifex reproduction sediment bioassay. Ecotoxicology 8:111–124

    CAS  Google Scholar 

  • McCall PL, Fischer JB (1980) Effects of tubificid oligochaetes on physical and chemical properties of lake Erie sediments. In: Brinkhurst RO, Cook DG (eds) Aquatic oligochaete biology. Plenum Press, New York, pp 253–317

    Google Scholar 

  • Matisoff G, Wang XS, McCall PL (1999) Biological redistribution of lake sediments by tubificid oligochaetes: Branchiura sowerbyi and Limnodrilus hoffmeisteri/Tubifex tubifex. J Great Lakes Res 25:205–219

    Google Scholar 

  • Meller M, Egeler P, Römbke J, Schallnass H, Nagel R, Streit B (1998) Short-term toxicity of lindane, hexachlorobenzene and copper sulfate to tubificid sludgeworms (Oligochaeta) in artifical media. Ecotoxicol Environ Saf 39:10–20

    CAS  Google Scholar 

  • Méndez-Fernández L, Martínez-Madrid M, Rodriguez P (2013) Toxicity and critical body residues of Cd, Cu and Cr in the aquatic oligochaete Tubifex tubifex (Müller) based on lethal and sublethal effects. Ecotoxicology 22:1445–1460

    Google Scholar 

  • Méndez-Fernández L, De Jonge M, Bervoets L (2014) Influences of sediment geochemistry on metal accumulation rates and toxicity in the aquatic oligochaete Tubifex tubifex. Aquat Toxicol 157:109–119

    Google Scholar 

  • Méndez-Fernández L, Rodriguez P, Martínez-Madrid M (2015) Sediment toxicity and bioaccumulation assessment in abandoned Cu and Hg mining areas of the Nalón River basin (Spain). Arch Environ Contam Toxicol 68:107–123

    Google Scholar 

  • Mermillod-Blondin F, Gérino M, Degrange V, Lensi R, Chassé JL, Rard M, Châtelliers MCD (2001) Testing the functional redundancy of Limnodrilus and Tubifex (Oligochaeta, Tubificidae) in hyporheic sediments: an experimental study in microcosms. Can J Fish Aquat Sci 58:1747–1759

    Google Scholar 

  • Mermillod-Blondin F, Nogaro G, Datry T, Malard F, Gibert J (2005) Do tubificid worms influence the fate of organic matter and pollutants in stormwater sediments? Environ Pollut 134:57–69

    CAS  Google Scholar 

  • Milbrink G (1993) Evidence of mutualistic interaction in freshwater oligochaete communities. Oikos 68:317–322

    Google Scholar 

  • Millward RN, Fleeger JW, Reible DD, Keteles KA, Cuningham BP, Zhang L (2001) Pyrene bioaccumulation, effects of pyrene exposure on particle size selection, and fecal pyrene content I the oligochaete Limnodrilus hoffmeisteri (Tubificidae, Oligochaeta). Environ Toxicol Chem 20:1359–1366

    CAS  Google Scholar 

  • Moore JW (1979) Influence of food availability and other factor on the composition, structure and density on a subartic population of benthic invertebrates. Hydrobiologia 62:215–223

    Google Scholar 

  • Moore JW, Ramamoorthy S (1984) Cadmiun. In: Heavy metals in natural waters. Applied monitoring and impact assessment. Springer series on environmental management. Springer New York, pp. 28–57

    Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: In: Page AL et al. (ed) Methods of soil analysis, Part 2. 2nd edn, Edn Agronomy. 9:961–1010. Am Soc of Agron, Inc Madison, WI

    Google Scholar 

  • Newman MC, Unger MA (2003) Fundamentals of ecotoxicology, 2nd edn. Lewis, Boca Raton, FL

    Google Scholar 

  • Nogaro G, Mermillod-Blondin F, Valett MH, François-Carcaillet F, Gaudet JP, Lafont M, Gibert J (2009) Ecosystem engineering at the sediment–water interface: bioturbation and consumer-substrate interaction. Oecologia 161:125–138

    Google Scholar 

  • Norwood WP, Borgmann U, Dixon DG (2007) Interactive effects of metals in mixtures on bioaccumulation in the amphipod Hyalella azteca. Aquat Toxicol 84:255–267

    CAS  Google Scholar 

  • OECD (2007) OECD Test Guideline 225. Sediment–water Lumbriculus toxicity test using spiked sediment. Organization for economic coordination and development, OECD, Paris

    Google Scholar 

  • OECD (2008) OECD Test Guideline 315. Bioaccumulation in sediment-dwelling benthic oligochaetes. Organization for Economic Coordination and Development, Paris

    Google Scholar 

  • Penry DL (1998) Applications of efficiency measurements in bioaccumulation studies: Definitions, clarifications, and a critique of methods. Environ Toxicol Chem 17:1633–1639

    CAS  Google Scholar 

  • Poddubnaya TL (1980) Characteristics of the life cycle of Tubificidae and Naididae. In: Kothekar VS (ed) Aquatic Oligochaeta worms. Taxonomy, ecology and faunistic studies in the USSR. Amerind Publ Co, New Delhi, pp 97–104

    Google Scholar 

  • Protano C, Zinnà L, Giampaoli S, Romano-Spica V, Chiavarini S, Vitali M (2014) Heavy metal pollution and potential ecological risks in rivers: A case study from Southern Italy. Bull Environ Contam Toxicol 92:75–80

    CAS  Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507

    CAS  Google Scholar 

  • Rainbow PS, Smith BD, Luoma SN (2009) Biodyamic modelling and the prediction of Ag,Cd and Zn accumulation from solution and sediment by the polychaete Nereis diversicolor. Mar Ecol Prog Ser 390:145–155

    CAS  Google Scholar 

  • Ramskov T, Amalie T, Marie-Noële C, Henriette S (2015) Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete – Part I: relative importance of water and sediment as exposure routes. Aquat Toxicol 164:81–91

    CAS  Google Scholar 

  • Reinfelder JR, Fisher NS, Luoma SN, Nichols JW, Wang WX (1998) Trace element trophic transfer in aquatic organisms: a critique of the kinetic model approach. Sci Total Environ 219:117–135

    CAS  Google Scholar 

  • Reynoldson TB (1987) Interactions between sediment contaminants and benthic organisms. Hydrobiologia 149:53–66

    CAS  Google Scholar 

  • Reynoldson TB, Rodriguez P, Martinez-Madrid M (1996) A comparison of reproduction, growth and acute toxicity in two populations of Tubifex tubifex (Müller, 1774) from the North American Great Lakes and Northern Spain. Hydrobiologia 334:199–206

    Google Scholar 

  • Rodriguez P, Reynoldson TB (2011) The pollution biology of aquatic oligochaetes. Springer, Dordrecht

    Google Scholar 

  • Rodriguez P, Martinez-Madrid M, Arrate JA, Navarro E (2001) Selective feeding by the aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata). Hydrobiologia 463:133–140

    Google Scholar 

  • Rodriguez P, Arrate J, Martinez-Madrid M, Reynoldson TB, Schumacher V, Viguri J (2006) Toxicity of Santander Bay sediments to the euryhaline freshwater oligochaete Limnodrilus hoffmeisteri. Hydrobiologia 564:157–169

    CAS  Google Scholar 

  • Salminen R (Chief-editor), Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W (2005). Geochemical Atlas of Europe. Part 1: background information, methodology and maps. Geological Survey of Finland, Espoo

    Google Scholar 

  • Say PJ, Giani N (1981) The Riou Mort, a tributary to the river Lot polluted by heavy metals. II. Accumulation of zinc by oligochaetes and chironomids. Acta Oecol 2:339–355

    CAS  Google Scholar 

  • Schöttler U (1978) The influence of anaerobiosis on the levels of adenosine nucleotides and some glycolotic metabolites in Tubifex sp. (Annelida, Oligochaeta). Comp Biochem Physiol B Biochem Mol Biol 61:29–32

    Google Scholar 

  • Singh RK, Chavan SL, Sapkale PH (2007) Heavy metal concentrations in water, sediments and body tissues of red worm (Tubifex spp.) collected from natural habitats in Mumbai, India. Environ Monit Assess 129:471–481

    CAS  Google Scholar 

  • Sokolova IM, Lannig G (2008) Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implication of global climate change. Clim Res 37:181–201

    Google Scholar 

  • Steen Redeker E, Blust R (2004) Accumulation and toxicity of cadmium in the aquatic oligochaete Tubifex tubifex: a kinetic modelling approach. Environ Sci Technol 38:537–543

    Google Scholar 

  • Steen Redeker E, Bervoets L, Blust R (2004) Dynamic model for the accumulation of cadmium and zinc from water and sediment by the aquatic oligochaete Tubifex tubifex. Environ Sci Technol 38:6193–6200

    Google Scholar 

  • Tevesz MJS, Soster FM, McCall PL (1980) The effects of size-selective feeding by oligochaetes on the physical properties of river sediments. J Sediment Petrol 50:561–568

    Google Scholar 

  • USEPA (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, 2nd edn. The United States Environmental Protection Agency, EPA 600/R-99/064

    Google Scholar 

  • Verdonschot PFM (1981) Some notes on the ecology of aquatic oligochaetes in the Delta Region of the Netherlands. Arch Hydrobiol 92:53–70

    Google Scholar 

  • Verdonschot PFM (2006) Beyond masses and blooms: the indicative value of oligochaetes. Hydrobiologia 564:127–142

    Google Scholar 

  • Volpers M, Neumann D (2005) Tolerance of two tubificid species (Tubifex tubifex and Limnodrilus hoffmeisteri) to hypoxic and sulfidic conditions in novel, long-term experiments. Arch Hydrobiol 164:13–38

    CAS  Google Scholar 

  • Wang WX, Fisher NS (1996) Assimilation of trace elements and carbon by the mussel Mytilus edulis: effects of food composition. Limnol Oceanogr 147:197–207

    Google Scholar 

  • Wang WX, Fisher NS (1999) Assimilation efficiencies of chemical contaminants in aquatic invertebrates: a synthesis. Environ Toxicol Chem 18:2034–2045

    CAS  Google Scholar 

  • Warren LA, Tessier A, Hare L (1998) Modelling cadmium accumulation by benthic invertebrates in situ: The relative contributions of sediment and overlying water reservoirs to organism cadmium concentrations. Limnol Oceanogr 43:1442–1454

    CAS  Google Scholar 

  • Wavre H, Brinkhurst RO (1971) Interactions between some tubificid oligochaete and bacteria found in the sediments of Toronto Harbour, Ontario. J Fish Res Bd Can 28:335–341

    Google Scholar 

  • Weis JS (2014) Physiological, developmental and behavioral effects of marine pollution. Springer, Dordrecht

    Google Scholar 

  • White DS, Keilty TJ (1988) Burrowing avoidance assays of contaminated Detroit River sediments, using the freshwater oligochaete Stylodrilus heringianus (Lumbriculidae). Arch Environ Contam Toxicol 17:673–681

    CAS  Google Scholar 

  • White DS, Klahr PC, Robbins JA (1987) Effects of temperature and density on sediment reworking by Stylodrilus heringianus (Oligochaeta: Lumbriculidae). J Great Lakes Res 13:147–156

    Google Scholar 

Download references

Acknowledgements

This investigation has been partially supported by the research project CGL2013-44655-R, sponsored by the Spanish Government, Ministry of Economy and Competitiveness (MINECO). Dr. Leire Méndez-Fernández was supported by a postdoctoral fellowship from the University of the Basque Country. We thank Alexandra Farrell for the English revision. We gratefully acknowledge two anonymous reviewers who helped to improve this manuscript with useful comments and suggestions. Finally, this work was possible thanks to all the “oligochaetologists” who have advanced the understanding of oligochaete biology.

Conflict of Interest The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leire Méndez-Fernández .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Méndez-Fernández, L., Rodriguez, P., Martínez-Madrid, M. (2017). Cadmium Bioaccumulation in Aquatic Oligochaetes Using a Biodynamic Model: A Review of Values of Physiological Parameters and Model Validation Using Laboratory and Field Bioaccumulation Data. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 243. Reviews of Environmental Contamination and Toxicology, vol 243. Springer, Cham. https://doi.org/10.1007/398_2017_1

Download citation

Publish with us

Policies and ethics