Skip to main content

Metal Complexes Catalyzed Cyclization with CO2

  • Chapter
  • First Online:
Carbon Dioxide and Organometallics

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 53))

Abstract

This chapter describes in general terms the catalytic methodology that has been made available for the use of carbon dioxide (CO2) in cyclization reactions that incorporate an intact CO2 fragment without changing the formal oxidation state of the carbon center. The major focus of this chapter will be on the most successful organometallic/inorganic complexes that have been used as catalyst systems throughout the last decade and the preferred ligand frameworks leading to elevated reactivity and/or selectivity behavior in CO2 coupling reactions. Attention will be especially given to homogeneous catalyst systems as they have proven to be more versatile in CO2 conversion catalysis and often have modular characteristics that allow for optimization of structure–activity relationships. The most important reactions that have been studied in the current context are designated CO2 “addition” reactions to small molecule heterocycles such as epoxides and aziridines, though more recently other coupling partners such as diamines, dialcohols, and amino nitriles have further advanced the use of CO2 in organic synthesis providing access to a wider range of structures. This chapter will serve to demonstrate the utility of CO2 as a carbon reagent in the catalytic formation of the most prominent organic structures using cyclization strategies specifically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Peters M, Köhler B, Kuckshinrichs W, Leitner W, Markewitz P, Müller TE (2011) ChemSusChem 4:1216–1240

    Article  CAS  Google Scholar 

  3. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Angew Chem Int Ed 50:8510–8537

    Article  CAS  Google Scholar 

  4. Martín R, Kleij AW (2011) ChemSusChem 4:1259–1263

    Article  CAS  Google Scholar 

  5. Sakakura T, Choi J-C, Yasuda H (2007) Chem Rev 107:2365–2387

    Article  CAS  Google Scholar 

  6. Decortes A, Castilla AM, Kleij AW (2010) Angew Chem Int Ed 49:9822–9837

    Article  CAS  Google Scholar 

  7. Mikkelsen M, Jørgensen M, Krebs FC (2010) Energy Environ Sci 3:43–81

    Article  CAS  Google Scholar 

  8. Darensbourg DJ (2007) Chem Rev 107:2388–2410

    Article  CAS  Google Scholar 

  9. Boogaerts IIF, Nolan SP (2011) Chem Commun 47:3021–3024

    Article  CAS  Google Scholar 

  10. North M, Pasquale R, Young C (2010) Green Chem 12:1514–1539

    Article  CAS  Google Scholar 

  11. Pescarmona PP, Taherimehr M (2012) Catal Sci Technol 2:2169–2187

    Article  CAS  Google Scholar 

  12. Maeda C, Miyazaki Y, Ema T (2014) Catal Sci Technol 4:1482–1497

    Article  CAS  Google Scholar 

  13. Yoshida M, Ihara M (2004) Chem Eur J 10:2886–2893

    Article  CAS  Google Scholar 

  14. Sakakura T, Kohno K (2009) Chem Commun: 1312–1330

    Google Scholar 

  15. Schäffner B, Schäffner F, Verevkin SP, Börner A (2010) Chem Rev 110:4554–4581

    Article  CAS  Google Scholar 

  16. Zhang H, Liu H-B, Yue J-M (2013) Chem Rev 114:883–898

    Article  CAS  Google Scholar 

  17. He Q, O’Brien JW, Kitselman KA, Tompkins LE, Curtis GCT, Kerton FM (2014) Catal Sci Technol 4:1513–1528

    Article  CAS  Google Scholar 

  18. Whiteoak CJ, Nova A, Maseras F, Kleij AW (2012) ChemSusChem 5:2032–2038

    Article  CAS  Google Scholar 

  19. Chatelet B, Joucla L, Dutasta J-P, Martinez A, Szeto KC, Dufaud V (2013) J Am Chem Soc 135:5348–5351

    Article  CAS  Google Scholar 

  20. Tsutsumi Y, Yamakawa K, Yoshida M, Ema T, Sakai T (2010) Org Lett 12:5728–5731

    Article  CAS  Google Scholar 

  21. Qi C, Ye J, Zeng W, Jiang H (2010) Adv Synth Catal 352:1925–1933

    Article  CAS  Google Scholar 

  22. Zhou H, Zhang W-Z, Liu C-H, Qu J-P, Lu X-B (2008) J Org Chem 73:8039–8044

    Article  CAS  Google Scholar 

  23. Sit WN, Ng SM, Kwong KY, Lau CP (2005) J Org Chem 70:8583–8586

    Article  CAS  Google Scholar 

  24. Doll KM, Erhan SZ (2005) Green Chem 7:849–854

    Article  CAS  Google Scholar 

  25. Kawanami H, Ikushima Y (2000) Chem Commun: 2089–2090

    Google Scholar 

  26. Sugimoto H, Inoue S (1998) Pure Appl Chem 70:2365–2369

    Article  CAS  Google Scholar 

  27. Ishida N, Shimamoto Y, Murakami M (2012) Angew Chem Int Ed 51:11750–11752

    Article  CAS  Google Scholar 

  28. Coates GW, Moore DR (2004) Angew Chem Int Ed 43:6618–6639

    Article  CAS  Google Scholar 

  29. Ratzenhofer M, Kisch H (1980) Angew Chem Int Ed Engl 19:317–318

    Article  Google Scholar 

  30. Caló V, Nacci A, Monopoli A, Fanizzi A (2002) Org Lett 4:2561–2563

    Article  CAS  Google Scholar 

  31. Kasuga K, Kabata N, Kato T, Sugimori T, Handa M (1998) Inorg Chim Acta 278:223–225

    Article  CAS  Google Scholar 

  32. Kasuga K, Nagao S, Fukumoto T, Handa M (1996) Polyhedron 15:69–72

    Article  CAS  Google Scholar 

  33. Ji D, Lu X, He R (2000) Appl Cat A Gen 203:329–333

    Article  CAS  Google Scholar 

  34. Taherimehr M, Al-Amsyar SM, Whiteoak CJ, Kleij AW, Pescarmona PP (2013) Green Chem 15:3083–3090

    Article  CAS  Google Scholar 

  35. Paddock RL, Nguyen ST (2001) J Am Chem Soc 123:11498–11499

    Article  CAS  Google Scholar 

  36. Lu X-B, Feng X-J, He R (2002) Appl Cat A Gen 234:25–33

    Article  CAS  Google Scholar 

  37. Shen Y-M, Duan W-L, Shi M (2003) J Org Chem 68:1559–1562

    Article  CAS  Google Scholar 

  38. Darensbourg DJ, Fang CC, Rodgers JL (2004) Organometallics 23:924–927

    Article  CAS  Google Scholar 

  39. Jing H, Edulji SK, Gibbs JM, Stern CL, Zhou H, Nguyen ST (2004) Inorg Chem 43:4315–4327

    Article  CAS  Google Scholar 

  40. Lu X-B, Zhang Y-J, Jin K, Luo L-M, Wang H (2004) J Catal 227:537–541

    Article  CAS  Google Scholar 

  41. Whiteoak CJ, Salassa G, Kleij AW (2012) Chem Soc Rev 41:622–631

    Article  CAS  Google Scholar 

  42. Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN (1997) Science 277:936–938

    Article  CAS  Google Scholar 

  43. Darensbourg DJ, Phelps AL (2005) Inorg Chem 44:4622–4629

    Article  CAS  Google Scholar 

  44. Darensbourg DJ, Bottarelli P, Andreatta JR (2007) Macromolecules 40:7727–7729

    Article  CAS  Google Scholar 

  45. Darensbourg DJ, Yarbrough JC (2002) J Am Chem Soc 124:6335–6342

    Article  CAS  Google Scholar 

  46. Darensbourg DJ, Yarbrough JC, Ortiz C, Fang CC (2003) J Am Chem Soc 125:7586–7591

    Article  CAS  Google Scholar 

  47. Monassier A, D’Elia V, Cokoja M, Dong H, Pelletier JDA, Basset J-M, Kühn FE (2013) ChemCatChem 5:1321–1324

    Article  CAS  Google Scholar 

  48. Decortes A, Kleij AW (2011) ChemCatChem 3:831–834

    Article  CAS  Google Scholar 

  49. Clegg W, Harrington RW, North M, Pasquale R (2010) Chem Eur J 16:6828–6843

    Article  CAS  Google Scholar 

  50. Whiteoak CJ, Martin E, Escudero-Adán EC, Kleij AW (2013) Adv Synth Catal 355:2233–2239

    Article  CAS  Google Scholar 

  51. Kielland N, Whiteoak CJ, Kleij AW (2013) Adv Synth Catal 355:2115–2138

    Article  CAS  Google Scholar 

  52. Zhang W, Loebach JL, Wilson SR, Jacobsen EN (1990) J Am Chem Soc 112:2801–2803

    Article  CAS  Google Scholar 

  53. Irie R, Noda K, Ito Y, Matsumoto N, Katsuki T (1990) Tetrahedron Asymmetry 2:481–494

    Article  Google Scholar 

  54. Jacobsen EN (2000) Acc Chem Res 33:421–431

    Article  CAS  Google Scholar 

  55. Aresta M, DiBenedetto A, Gianfrate L, Pastore C (2003) Appl Catal A Gen 255:5–11

    Article  CAS  Google Scholar 

  56. Lu X-B, Liang B, Zhang Y-J, Tian Y-Z, Wang Y-M, Bai C-X, Wang H, Zhang R (2004) J Am Chem Soc 126:3732–3733

    Article  CAS  Google Scholar 

  57. Jin L, Huang Y, Jing H, Chang T, Yan P (2008) Tetrahedron Asymmetry 19:1947–1953

    Article  CAS  Google Scholar 

  58. Vincens V, Borgne AL, Spassky N (1989) Makromol Chem Rapid 10:623–628

    Article  CAS  Google Scholar 

  59. Lu X-B, He R, Bai C-X (2002) J Mol Catal A Chem 186:1–11

    Article  CAS  Google Scholar 

  60. Lu X-B, Zhang YJ, Liang B, Wang H (2004) J Mol Catal A Chem 210:31–34

    Article  CAS  Google Scholar 

  61. Achard TRJ, Clutterbuck LA, North M (2005) Synlett: 1828–1847

    Google Scholar 

  62. Li F, Xia C, Xu L, Sun W, Chen G (2003) Chem Commun: 2042–2043

    Google Scholar 

  63. Srivastava R, Bennur TH, Srinivas D (2005) J Mol Catal A Chem 226:199–205

    Article  CAS  Google Scholar 

  64. Man ML, Lam KC, Sit WN, Ng SM, Zhou Z, Lin Z, Lau CP (2006) Chem Eur J 12:1004–1015

    Article  CAS  Google Scholar 

  65. Darensbourg DJ, Horn A Jr, Moncada AI (2010) Green Chem 12:1376–1379

    Article  CAS  Google Scholar 

  66. Decortes A, Martínez Belmonte M, Benet-Buchholz J, Kleij AW (2010) Chem Commun 46:4580–4582

    Article  CAS  Google Scholar 

  67. Castro-Gómez F, Salassa G, Kleij AW, Bo C (2013) Chem Eur J 19:6289–6298

    Article  CAS  Google Scholar 

  68. Haak RM, Wezenberg SJ, Kleij AW (2010) Chem Commun 46:2713–2723

    Article  CAS  Google Scholar 

  69. Ren W-M, Liu Z-W, Wen Y-Q, Zhang R, Lu X-B (2009) J Am Chem Soc 131:11509–11518

    Article  CAS  Google Scholar 

  70. For a recent example see: Ema T, Miyazaki Y, Koyama S, Yano Y, Sakai T (2012) Chem Commun 48:4489–4491

    Google Scholar 

  71. Melendez J, North M, Villuendas P (2009) Chem Commun:2577–2579

    Google Scholar 

  72. Meléndez J, North M, Pasquale R (2007) Eur J Inorg Chem 21:3323–3326

    Article  CAS  Google Scholar 

  73. North M, Wang B, Young C (2011) Energy Environ Sci 4:4163–4170

    Article  CAS  Google Scholar 

  74. Tian D, Liu B, Gan Q, Li H, Darensbourg DJ (2012) ACS Catal 2:2029–2035

    Article  CAS  Google Scholar 

  75. Liu Y, Ren W-M, Liu J, Lu X-B (2013) Angew Chem Int Ed 52:11594–11598

    Article  CAS  Google Scholar 

  76. Darensbourg DJ, Chung W-C, Wilson SJ (2013) ACS Catal 3:3050–3057

    Article  CAS  Google Scholar 

  77. Luo R, Zhou X, Chen S, Li Y, Zhou L, Ji H (2014) Green Chem 16:1496–1506

    Article  CAS  Google Scholar 

  78. Buchard A, Kember MR, Sandeman KG, Williams CK (2011) Chem Commun 47:212–214

    Article  CAS  Google Scholar 

  79. Escárcega-Bobadilla MV, Martínez Belmonte M, Martin E, Escudero-Adán EC, Kleij AW (2013) Chem Eur J 19:2641–2648

    Article  CAS  Google Scholar 

  80. Chang T, Jin L, Jing H (2009) ChemCatChem 1:379–383

    Article  CAS  Google Scholar 

  81. Jessop PG, Subramaniam B (2007) Chem Rev 107:2666–2694

    Article  CAS  Google Scholar 

  82. Minakata S, Sasaki I, Ide T (2010) Angew Chem Int Ed 49:1309–1311

    Article  CAS  Google Scholar 

  83. Wu J, Kozak JA, Simeon F, Hatton TA, Jamison TF (2014) Chem Sci 5:1227–1231

    Article  CAS  Google Scholar 

  84. Yang X, Wu J, Mao X, Jamison TF, Hatton TA (2014) Chem Commun 50:3245–3248

    Article  CAS  Google Scholar 

  85. Yamada W, Sugawara Y, Cheng HM, Ikeno T, Yamada T (2007) Eur J Org Chem 2604–2607

    Google Scholar 

  86. Yoshida S, Fukui K, Kikuchi S, Yamada T (2009) Chem Lett 38:786–787

    Article  CAS  Google Scholar 

  87. Costa M, Chiusoli GP, Rizzardi M (1996) Chem Commun:1699–1700

    Google Scholar 

  88. Ca ND, Gabriele B, Ruffolo G, Veltri L, Zanetta T, Costa M (2011) Adv Synth Catal 353:133–146

    Article  CAS  Google Scholar 

  89. Yoshida S, Fukui K, Kikuchi S, Yamada T (2010) J Am Chem Soc 132:4072–4073

    Article  CAS  Google Scholar 

  90. Tang X, Qi C, He H, Jiang H, Ren Y, Yuan G (2013) Adv Synth Catal 355:2019–2028

    Article  CAS  Google Scholar 

  91. Diekema D, Jones R (2000) Drugs 59:7–16

    Article  CAS  Google Scholar 

  92. Pandit N, Singla RK, Shrivastava B (2012) Indo Global J Pharm Sci 2:245–249

    CAS  Google Scholar 

  93. Shaw KJ, Barbachyn MR (2011) Ann NY Acad Sci 1241:48–70

    Article  CAS  Google Scholar 

  94. Michalska K, Karpiuk I, Król M, Tyski S (2013) Bioorg Med Chem 21:577–591

    Article  CAS  Google Scholar 

  95. Zappia G, Cancelliere G, Gacs-Baitz E, Delle Monache G, Misiti D, Nevola L, Botta B (2007) Curr Org Synth 4:238–309

    Article  CAS  Google Scholar 

  96. Evans DA, Takacs JM, McGee LR, Ennis MD, Mathre DJ, Bartroli J (1981) Pure Appl Chem 53:1109–1127

    Article  CAS  Google Scholar 

  97. Green R, Peed J, Taylor JE, Blackburn RAR, Bull SD (2013) Nat Protoc 8:1890–1906

    Article  CAS  Google Scholar 

  98. For a recent example see: Nale DB, Rana S, Parida K, Bhanage BM (2014) Appl Catal A Gen 469:340–349

    Google Scholar 

  99. Sibi MP, Deshpande PK, Ji J (1995) Tetrahedron Lett 36:8965–8968

    Article  CAS  Google Scholar 

  100. Buchstaller H-P (2003) J Comb Chem 5:789–793

    Article  CAS  Google Scholar 

  101. Mizuno T, Takahashi J, Ogawa A (2002) Tetrahedron 58:7805–7808

    Article  CAS  Google Scholar 

  102. Pulla S, Felton CM, Ramidi P, Gartia Y, Ali N, Nasini UB, Ghosh A (2013) J CO2 Utiliz 2:49–57

    Article  CAS  Google Scholar 

  103. Tascedda P, Dunach E (2000) Chem Commun:449–450

    Google Scholar 

  104. Sudo A, Morioka Y, Koizumi E, Sanda F, Endo T (2003) Tetrahedron Lett 44:7889–7891

    Article  CAS  Google Scholar 

  105. Hancock MT, Pinhas AR (2003) Tetrahedron Lett 44:5457–5460

    Article  CAS  Google Scholar 

  106. Miller AW, Nguyen ST (2004) Org Lett 6:2301–2304

    Article  CAS  Google Scholar 

  107. Wu Y, He L-N, Du Y, Wang J-Q, Miao C-X, Li W (2009) Tetrahedron 65:6204–6210

    Article  CAS  Google Scholar 

  108. Fontana F, Chen CC, Aggarwal VK (2011) Org Lett 13:3454–3457

    Article  CAS  Google Scholar 

  109. Soga K, Hosoda S, Nakamura H, Ikeda S (1976) J Chem Soc Chem Commun 16:617

    Article  Google Scholar 

  110. Kawanami H, Ikushima Y (2002) Tetrahedron Lett 43:3841–3844

    Article  CAS  Google Scholar 

  111. Seayad J, Seayad AM, Ng JKP, Chai CLL (2012) ChemCatChem 4:774–777

    Article  CAS  Google Scholar 

  112. Du Y, Wu Y, Liu A-H, He L-N (2008) J Org Chem 73:4709–4712

    Article  CAS  Google Scholar 

  113. Phung C, Ulrich RM, Ibrahim M, Tighe NTG, Lieberman DL, Pinhas AR (2011) Green Chem 13:3224–3229

    Article  CAS  Google Scholar 

  114. Nomura R, Matsuda H, Baba A, Kori M, Ogawa S (1985) Ind Eng Chem Prod Res Dev 24:239–242

    Google Scholar 

  115. Pulla S, Felton CM, Gartia Y, Ramidi P, Ghosh A (2013) ACS Sust Chem Eng 1:309–312

    Article  CAS  Google Scholar 

  116. Dinsmore CJ, Mercer SP (2004) Org Lett 6:2885–2888

    Article  CAS  Google Scholar 

  117. Kodaka M, Tomohiro T, Okuno H (1993) J Chem Soc Chem Commun 81–82

    Google Scholar 

  118. Mitsudo T-A, Hori Y, Yamakawa Y, Watanabe Y (1987) Tetrahedron Lett 28:4417–4418

    Article  CAS  Google Scholar 

  119. Chiusoli GP, Costa M, Gabriele B, Salerno G (1999) J Mol Catal Chem 143:297–310

    Article  CAS  Google Scholar 

  120. Shi M, Shen Y-M (2002) J Org Chem 67:16–21

    Article  CAS  Google Scholar 

  121. Meessen JH (2005) “Urea”, Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, pp 657–693

    Google Scholar 

  122. Mizuno T, Okamoto N, Ito T, Miyata T (2000) Tetrahedron Lett 41:1051–1053

    Article  CAS  Google Scholar 

  123. Patil YP, Tambade PJ, Jagtap SR, Bhanage BM (2008) Green Chem Lett Rev 1:127–132

    Article  CAS  Google Scholar 

  124. Kimura T, Kamata K, Mizuno N (2012) Angew Chem Int Ed 51:6700–6703

    Article  CAS  Google Scholar 

  125. Kimura T, Sunaba H, Kamata K, Mizuno N (2012) Inorg Chem 51:13001–13008

    Article  CAS  Google Scholar 

  126. Fujita S-I, Tanaka M, Arai M (2014) Catal Sci Technol 4:1563–1569

    Article  CAS  Google Scholar 

  127. Aresta M, Nobile CF, Albano VG, Forni E, Manassero M (1975) J Chem Soc Chem Commun 636–637

    Google Scholar 

  128. Inoue Y, Itoh Y, Hashimoto H (1977) Chem Lett 855–856

    Google Scholar 

  129. Inoue Y, Itoh Y, Hashimoto H (1978) Chem Lett 633–634

    Google Scholar 

  130. Inoue Y, Hibi T, Satake M, Hashimoto H (1979) J Chem Soc Chem Commun:982–982

    Google Scholar 

  131. Sasaki Y, Inoue Y, Hashimoto H (1976) J Chem Soc Chem Commun:605–606

    Google Scholar 

  132. Musco A, Perego C, Tartiari V (1978) Inorg Chim Acta 28:L147–L148

    Article  CAS  Google Scholar 

  133. Behr A, He R, Juszak KD, Krueger C, Tsay YH (1986) Chem Ber 119:991–1015

    Article  CAS  Google Scholar 

  134. Behr A, Bahke P, Becker M (2004) Chem Ing Tech 76:1828–1832

    Article  CAS  Google Scholar 

  135. Behr A, Heite M (2000) Chem Ing Tech 72:58–61

    Article  CAS  Google Scholar 

  136. Nakano R, Ito S, Nozaki K (2014) Nat Chem 6:325–331

    Article  CAS  Google Scholar 

  137. Hoberg H, Peres Y, Krueger C, Tsay YH (1987) Angew Chem 99:799–800

    Article  CAS  Google Scholar 

  138. Huguet N, Jevtovikj I, Gordillo A, Lejkowski ML, Lindner R, Bru M, Khalimon AY, Rominger F, Schunk SA, Hofmann P, Limbach M (2014) Chem Eur J 51:16858–16862

    Article  CAS  Google Scholar 

  139. Hendriksen C, Pidko EA, Yang G, Schäffner B, Vogt D (2014) Chem Eur J 51:12037–12040

    Article  CAS  Google Scholar 

  140. Lejkowski ML, Lindner R, Kageyama T, Bódizs GÉ, Plessow PN, Müller IB, Schäfer A, Rominger F, Hofmann P, Futter C, Schunk SA, Limbach M (2012) Chem Eur J 18:14017–14025

    Article  CAS  Google Scholar 

  141. Behr A, Thelen G (1984) C1 Mol Chem 1:137–153

    CAS  Google Scholar 

  142. Tsuda T, Morikawa S, Sumiya R, Saegusa T (1988) J Org Chem 53:3140–3145

    Article  CAS  Google Scholar 

  143. Louie J, Gibby JE, Farnworth MV, Tekavec TN (2002) J Am Chem Soc 124:15188–15189

    Article  CAS  Google Scholar 

  144. Foley P, Eghbali N, Anastas PT (2010) J Nat Prod 73:811–813

    Article  CAS  Google Scholar 

  145. Doehring A, Jolly PW (1980) Tetrahedron Lett 21:3021–3024

    Article  CAS  Google Scholar 

  146. See for a recent example: Das Neves Gomes C, Jacquet O, Villiers C, Thuéry P, Ephritikhine M, Cantat T (2012) Angew Chem Int Ed 51:187–190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjan W. Kleij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rintjema, J., Peña Carrodeguas, L., Laserna, V., Sopeña, S., Kleij, A.W. (2015). Metal Complexes Catalyzed Cyclization with CO2 . In: Lu, XB. (eds) Carbon Dioxide and Organometallics. Topics in Organometallic Chemistry, vol 53. Springer, Cham. https://doi.org/10.1007/3418_2015_94

Download citation

Publish with us

Policies and ethics