Skip to main content

The Carbon Dioxide Molecule and the Effects of Its Interaction with Electrophiles and Nucleophiles

  • Chapter
  • First Online:
Carbon Dioxide and Organometallics

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 53))

Abstract

This chapter discusses the CO2 molecule in its ground and excited states, correlating the energy to the molecular geometry. The effect of adding or taking out an electron is illustrated, opening the way to the coordination of CO2 to metal centers. Several modes of bonding of CO2 are presented and the IR and multinuclear NMR spectroscopic data of transition metal complexes or adducts with Lewis acids and bases are commented. The reactivity of the coordinated heterocumulene is presented through several examples. The use of IR and NMR techniques for determining the molecular behavior of transition metal complexes in solution is exemplified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuchitsu K (ed) (1992) Structure data of free polyatomic molecules, vol II/21, Landolt-Börnstein. Springer, Berlin, p 151

    Google Scholar 

  2. Kuchitsu K (ed) (1995) Structure data of free polyatomic molecules, vol II/23, Landolt-Börnstein. Springer, Berlin, p 146

    Google Scholar 

  3. Vučelić M, Ohrn Y, Sabin JR (1973) Ab initio calculation of the vibrational and electronic properties of carbon dioxide. J Chem Phys 59:3003–3007

    Article  Google Scholar 

  4. Cremaschi P, Simonetta M (1974) A theoretical study of electrophilic aromatic substitution. I. The electronic structure of NO2 +. Theor Chim Acta 34:175–182

    Article  CAS  Google Scholar 

  5. Müller JE, Jones RO, Harris J (1983) Density functional calculations for H2O, NH3, and CO2 using localized muffin-tin orbitals. J Chem Phys 79:1874–1884

    Article  Google Scholar 

  6. Moncrieff D, Wilson S (1995) On the accuracy of the algebraic approximation in molecular electronic structure calculations: IV. An application to a polyatomic molecule: the CO2 molecule in the Hartree-Fock approximation. J Phys B At Mol Opt Phys 28:4007–4013

    Article  CAS  Google Scholar 

  7. Nakatsuji H (1983) Cluster expansion of the wavefunction. Valence and Rydberg excitations, ionizations, and inner-valence ionization of CO2 and N2O studied by the SAC and SAC CI theories. Chem Phys 75:425–441

    Article  CAS  Google Scholar 

  8. Gutsev GL, Bartlett RJ, Compton RN (1998) Electron affinities of CO2, OCS, and CS2. J Chem Phys 108:6756–6762

    Article  CAS  Google Scholar 

  9. Maroulis G, Thakkar AJ (1990) Polarizabilities and hyperpolarizabilities of carbon dioxide. J Chem Phys 93:4164–4171

    Article  CAS  Google Scholar 

  10. Buckingham AD, Disch RL, Dunmur DA (1968) Quadrupole moments of some simple molecules. J Am Chem Soc 90:3104–3107

    Article  CAS  Google Scholar 

  11. Lobue JM, Rice JK, Novick SE (1984) Qualitative structure of (CO2)2 and (OCS)2. Chem Phys Lett 112:376–380

    Article  CAS  Google Scholar 

  12. Rossi AR, Jordan KD (1979) Comment on the structure and stability of (CO2)2 . J Chem Phys 70:4442–4444

    Google Scholar 

  13. Johnson MA, Alexander ML, Lineberger WC (1984) Photodestruction cross sections for mass-selected ion clusters: (CO2) n +. Chem Phys Lett 112:285–290

    Article  CAS  Google Scholar 

  14. Bowen KH, Liesegang GW, Sanders RA, Herschbach DR (1983) Electron attachment to molecular clusters by collisional charge transfer. J Phys Chem 87:557–565

    Article  CAS  Google Scholar 

  15. Allian CJ, Gelius U, Allison DA, Johansson G, Siegbahn H, Siegbahn K (1972) ESCA studies of CO2, CS2 and COS. J Electron Spectrosc Relat Phenom 1:131–151

    Article  Google Scholar 

  16. Turner DW (1968) Molecular photoelectron spectroscopy. In: Hill HAO, Day P (eds) Physical methods in advanced inorganic chemistry. Interscience, London

    Google Scholar 

  17. Turner DW, May DP (1967) Frank-Condon factors in ionization: experimental measurements using molecular photoelectron spectroscopy. J Chem Phys 46:1156–1160

    Article  CAS  Google Scholar 

  18. Walsh AD (1953) The electronic orbitals, shapes, and spectra of polyatomic molecules. Part II. Non-hydride AB2 and BAC molecules. J Chem Soc 75(9):2266–2288

    Google Scholar 

  19. Spielfieldel A, Feautrier N, Cossart-Magos C, Werner H-J, Botschwina P (1992) Bent valence states of CO2. J Chem Phys 97:8382–8388

    Article  Google Scholar 

  20. Cossart-Magos C, Launay F, Parkin JE (1992) High resolution absorption spectrum of CO2 between 1750 and 2000 Å. 1. Rotational analysis of nine perpendicular-type bands assigned to a new bent-linear electronic transition. Mol Phys 75:835–856

    Article  CAS  Google Scholar 

  21. Dixon RN (1963) The carbon monoxide flame bands. Proc R Soc Lond A 275:431–446

    Article  CAS  Google Scholar 

  22. Cossart-Magos C, Launay F, Parkin JE (2005) High resolution absorption spectrum of CO2 between 1750 and 2000 Å. 2. Rotational analysis of two parallel-type bands assigned to the lowest electronic transition \( {1}^3{\mathrm{B}}_2\leftarrow {\mathrm{X}}^1{\Sigma}_{\mathrm{g}}^{+} \). Mol Phys 103:629–641

    Article  CAS  Google Scholar 

  23. Mohammed HH, Fournier J, Deson J, Vermeil C (1980) Matrix isolation study of the CO2 lowest triplet state. Chem Phys Lett 73:315–318

    Article  CAS  Google Scholar 

  24. Winter NW, Bender CF, Goddard WA III (1973) Theoretical assignments of the low-lying electronic states of carbon dioxide. Chem Phys Lett 20:489–492

    Article  CAS  Google Scholar 

  25. Matoušek I, Fojtík A, Zahradník R (1975) A semiempirical molecular orbital study of radicals and radical ions derived from carbon oxides. Collect Czech Chem Commun 40:1679–1685

    Article  Google Scholar 

  26. Pacansky J, Wahlgren U, Bagus PS (1975) SCF ab initio ground state energy surface for CO2 and \( {\mathrm{CO}}_2^{-} \). J Chem Phys 62:2740–2744

    Article  CAS  Google Scholar 

  27. England WB, Rosemberg BJ, Fortune PJ, Wahl AC (1976) Ab initio vertical spectra and linear bent correlation diagrams for the valence states of CO2 and its singly charged ions. J Chem Phys 65:684–691

    Article  CAS  Google Scholar 

  28. England WB (1981) Accurate ab initio SCF energy curves for the lowest electronic states of \( {\mathrm{CO}}_2/{\mathrm{CO}}_2^{-} \). Chem Phys Lett 78:607–613

    Article  CAS  Google Scholar 

  29. Sommerfeld T, Meyer H-D, Cederbaum LS (2004) Potential energy surface of \( {\mathrm{CO}}_2^{-} \) anion. Phys Chem Chem Phys 6:42–45

    Article  CAS  Google Scholar 

  30. Villamena FA, Locigno EJ, Rockenbauer A, Hadad CM, Zweier JL (2006) Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO).1. Carbon dioxide radical anion. J Phys Chem 110:13253–13258

    Article  CAS  Google Scholar 

  31. Feller D, Dixon DA, Francisco JS (2003) Coupled cluster theory determination of the heats of formation of combustion-related compounds: CO, HCO, CO2, HCO2, HOCO, HC(O)OH, and HC(O)OOH. J Phys Chem 107:1604–1617

    Article  CAS  Google Scholar 

  32. Dixon DA, Feller D, Francisco JS (2003) Molecular structure, vibrational frequencies, and energetics of the HCO, HOCO and HCO2 anions. J Phys Chem A 107:186–190

    Article  CAS  Google Scholar 

  33. Paulson JF (1970) Some negative-ion reactions with CO2. J Chem Phys 52:963–964

    Article  CAS  Google Scholar 

  34. Cooper CD, Compton RN (1972) Metastable anions of CO2. Chem Phys Lett 14:29–32

    Article  CAS  Google Scholar 

  35. Cooper CD, Compton RN (1973) Electron attachment to cyclic anhydrides and related compounds. J Chem Phys 59:3550–3565

    Article  CAS  Google Scholar 

  36. Compton RN, Reinhardt PW, Cooper CD (1975) Collisional ionization of Na, K, and Cs by CO2, COS, and CS2: molecular electron affinities. J Chem Phys 63:3821–3827

    Article  CAS  Google Scholar 

  37. Boness MJW, Schulz GJ (1974) Vibrational excitation in CO2 via the 3.8-eV resonance. Phys Rev A 9:1969–1979

    Article  CAS  Google Scholar 

  38. Ovenall DW, Whiffen DH (1961) Electron spin resonance and structure of the \( {\mathrm{CO}}_2^{-} \) radical anion. Mol Phys 4:135–144

    Article  CAS  Google Scholar 

  39. Chantry GW, Whiffen DH (1962) Electronic absorption spectra of \( {\mathrm{CO}}_2^{-} \) trapped in γ-irradiated crystalline sodium formate. Mol Phys 5:189–194

    Article  CAS  Google Scholar 

  40. Hartman KO, Hisatsune IC (1966) Infrared spectrum of carbon dioxide anion radical. J Chem Phys 44:1913–1918

    Article  CAS  Google Scholar 

  41. Hisatsune IC, Adl T, Beahm EC, Kempf RJ (1970) Matrix isolation and decay kinetics of carbon dioxide and carbonate anion free radicals. J Phys Chem 74:3225–3231

    Article  CAS  Google Scholar 

  42. Callens F, Matthys P, Boesman E (1989) Paramagnetic resonance spectrum of \( {\mathrm{CO}}_2^{-} \) trapped in KCl. J Phys Chem Solids 50:377–381

    Article  CAS  Google Scholar 

  43. Rudko VV, Vorona JP, Baran NP, Ishchenko SS, Zatovsky IV, Chumakova LS (2010) The mechanism of \( {\mathrm{CO}}_2^{-} \) radical formation in biological and synthetic apatites. Health Phys 98:322–326

    Article  CAS  Google Scholar 

  44. Vestad TA, Gustafsson H, Lund A, Hole EO, Sagstuen E (2004) Radiation-induced radicals in lithium formate monohydrate (LiHCO2 .H2O). EPR and ENDOR studies of X-irradiated crystal and polycrystalline samples. Phys Chem Chem Phys 6:3017–3022

    Article  CAS  Google Scholar 

  45. Symons MCR, West DX, Wilkinson JG (1976) Radiation damage in thallous formate and acetate: charge transfer from thallous ions. Int J Radiat Phys Chem 8:375–379

    Article  CAS  Google Scholar 

  46. Jacox ME, Milligan DE (1974) Vibrational spectrum of CO2 in an argon matrix. Chem Phys Lett 28:163–168

    Article  CAS  Google Scholar 

  47. Kafafi ZH, Hauge RH, Billups WE, Margrave JL (1983) Carbon dioxide activation by lithium metal. 1. Infrared spectra of \( {\mathrm{Li}}^{+}{\mathrm{CO}}_2^{-} \), \( {\mathrm{Li}}^{+}{\mathrm{C}}_2{\mathrm{O}}_4^{-} \) and \( {\mathrm{Li}}_2^{2+}{\mathrm{CO}}_2^{2-} \) in inert gas matrices. J Am Chem Soc 105:3886–3893

    Article  CAS  Google Scholar 

  48. Manceron L, Loutellier A, Perchard JP (1985) Reduction of carbon dioxide to oxalate by lithium atoms: a matrix isolation study of the intermediate steps. J Mol Struct 129:115–124

    Article  CAS  Google Scholar 

  49. Kafafi ZH, Hauge RH, Billups WE, Margrave JL (1984) Carbon dioxide activation by alkali metals. 2. Infrared spectra of \( {\mathrm{M}}^{+}{\mathrm{CO}}_2^{-} \) and \( {\mathrm{M}}_2^{2+}{\mathrm{CO}}_2^{2-} \) in argon and nitrogen matrices. Inorg Chem 23:177–183

    Article  CAS  Google Scholar 

  50. Bencivenni L, D’Alesssio L, Raimondo F, Pelino M (1986) Vibrational spectra and structure of M(CO2) and M2(CO2)2 molecules. Inorg Chim Acta 121:161–166

    Article  CAS  Google Scholar 

  51. Jordan KD (1984) Theoretical investigation of lithium and sodium complexes with CO2. J Phys Chem 88:2459–2465

    Article  CAS  Google Scholar 

  52. Borel JP, Faes F, Pittel A (1981) Electron paramagnetic resonance of Li-CO2 complexes in a CO2 matrix at 77 K. J Chem Phys 74:2120–2123

    Article  CAS  Google Scholar 

  53. Jacox ME, Thompson WE (1989) The vibrational spectra of molecular ions in solid neon. I. \( {\mathrm{CO}}_2^{+} \) and \( {\mathrm{CO}}_2^{-} \). J Chem Phys 91:1410–1416

    Article  CAS  Google Scholar 

  54. Cook RJ, Whiffen DH (1967) Endor measurements in X-irradiated sodium formate. J Phys Chem 71:93–97

    Article  CAS  Google Scholar 

  55. Atkins PW, Keen N, Symons MCR (1962) Oxides and oxyions of the non-metals. Part II. \( {\mathrm{CO}}_2^{-} \) and NO2. J Chem Soc: 2873–2880

    Google Scholar 

  56. Dalal NS, McDowell CA, Park JM (1975) EPR and ENDOR studies of \( {\mathrm{CO}}_2^{-} \) centers in x- and uv-irradiated single crystals of sodium formate. J Chem Phys 63:1856–1862

    Article  CAS  Google Scholar 

  57. Bentley J, Carmichael I (1985) Electron spin properties of complexes formed by Li or Na with CO2. J Phys Chem 89:4040–4042

    Article  CAS  Google Scholar 

  58. Knight LB Jr, Hill D, Berry K, Babb R, Feller D (1996) Electron spin resonance rare gas matrix studies of \( {}^{12}\mathrm{C}{\mathrm{O}}_2^{-} \), \( {}^{13}\mathrm{C}{\mathrm{O}}_2^{-} \), and \( {\mathrm{C}}^{17}{\mathrm{O}}_2^{-} \): comparison with ab initio calculations. J Chem Phys 105:5672–5686

    Article  CAS  Google Scholar 

  59. Jacox ME, Thompson WE (1999) The vibrational spectra of \( {\mathrm{CO}}_2^{+} \), \( {\left({\mathrm{CO}}_2\right)}_2^{+} \), \( {\mathrm{CO}}_2^{-} \) and \( {\left({\mathrm{CO}}_2\right)}_2^{-} \) trapped in solid neon. J Chem Phys 110:4487–4496

    Google Scholar 

  60. Zhou M, Andrews L (1999) Infrared spectra of the \( {\mathrm{CO}}_2^{-} \) and \( {\mathrm{C}}_2{\mathrm{O}}_4^{-} \) anions in solid argon. J Chem Phys 110:2414–2422

    Article  CAS  Google Scholar 

  61. Freund HJ, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25:225–273

    Article  Google Scholar 

  62. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638

    Article  CAS  Google Scholar 

  63. Chiesa M, Giamello E (2007) Carbon dioxide activation by surface excess electrons: an EPR study of the \( {\mathrm{CO}}_2^{-} \) radical ion adsorbed on the surface of MgO. Chem Eur J 13:1261–1267

    Article  CAS  Google Scholar 

  64. Farkas AP, Solymosi F (2009) Activation and reaction of CO2 on a K-promoted Au(111) surface. J Phys Chem C 113:19930–19936

    Article  CAS  Google Scholar 

  65. Thampi KR, Kiwi J, Gratzel M (1987) Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 327:506–508

    Article  CAS  Google Scholar 

  66. Ikeue K, Yamashita H, Anpo M, Takewaki T (2001) Photocatalytic reduction of CO2 with H2O on Ti−β zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. J Phys Chem B 105:8350–8355

    Article  CAS  Google Scholar 

  67. Hwang JS, Chang JS, Psrk SE, Ikeue K, Anpo M (2005) Photoreduction of carbon dioxide on surface functionalized nanoporous catalysts. Top Catal 35:311–319

    Article  CAS  Google Scholar 

  68. Saladin F, Alxneit I (1997) Temperature dependence of the photochemical reduction of CO2 in the presence of H2O at the solid/gas interface of TiO2. J Chem Soc Faraday Trans 93: 4159–4163

    Google Scholar 

  69. He H, Zapol P, Curtiss LA (2010) A theoretical study of CO2 anions on anatase (101) surface. J Phys Chem C 114:21474–21481

    Article  CAS  Google Scholar 

  70. Preda G, Pacchioni G, Chiesa M, Giamello E (2008) Formation of \( {\mathrm{CO}}_2^{-} \) radical anion from CO2 adsorption on an electron-rich MgO surface: a combined ab initio and pulse EPR study. J Phys Chem C 112:19568–19576

    Article  CAS  Google Scholar 

  71. Wardman P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solutions. J Phys Chem Ref Data 18:1637–1756

    Article  CAS  Google Scholar 

  72. Von Sonntag C (1987) The chemical basis of radiation biology. Taylor and Francis, London

    Google Scholar 

  73. Flyunt R, Schuchmann MN, von Sonntag C (2001) A common carbanion intermediate in the recombination and proton-catalysed disproportionation of the carboxyl radical anion CO2, in aqueous solution. Chem Eur J 7:796–799

    Article  CAS  Google Scholar 

  74. Herzberg G (1966) Molecular spectra and molecular structure.III. Electronic spectra and electronic structure of polyatomic molecules. Van Nostrand-Reinhold, New York

    Google Scholar 

  75. Johnson MA, Rostas J (1995) Vibronic structure of the CO2 + ion: reinvestigation of the antisymmetric stretch vibration in the X, Ã, and B states. Mol Phys 85:839–868

    Article  CAS  Google Scholar 

  76. Gauyacq D, Larcher C, Rostas J (1979) The emission spectrum of the \( {\mathrm{CO}}_2^{+} \) ion: rovibronic analysis of the à 2Πu - X 2Πg band system. Can J Phys 57:1634–1649

    Article  CAS  Google Scholar 

  77. Gauyacq D, Horani M, Leach S, Rostas J (1975) The emission spectrum of the \( {\mathrm{CO}}_2^{+} \) ion: \( {B}^2{\Sigma}_{\mathrm{u}}^{+}-{X}^2{\Pi}_{\mathrm{g}} \) band system. Can J Phys 53:2040–2059

    Article  CAS  Google Scholar 

  78. Cossart-Magos C, Jungen M, Launay F (1987) High resolution absorption spectrum of CO2 between 10 and 14 eV. Assignment of nf Rydberg series leading to a new value of the first ionization potential. Mol Phys 61:1077–1117

    Article  CAS  Google Scholar 

  79. Horsley JA, Fink WH (1969) Study of the electronic structure of the ions \( {\mathrm{CO}}_2^{+} \) and N2O+ by the LCAO-MO-SCF method. J Phys B At Mol Phys 2(12):1261–1270

    Article  CAS  Google Scholar 

  80. Carsky P, Kuhn J, Zahradnik R (1975) Semiempirical all-valence-electron MO calculations on the electronic spectra of linear radicals with degenerate ground states. J Mol Spectrosc 55:120–130

    Article  CAS  Google Scholar 

  81. Grimm FA, Larsson M (1984) A theoretical investigation on the low lying electronic states of \( {\mathrm{CO}}_2^{+} \) in both linear and bent configurations. Phys Scr 29:337–343

    Article  CAS  Google Scholar 

  82. Chambaud G, Gabriel W, Rosmus P, Rostas J (1992) Ro-vibronic states in the electronic ground state of \( {\mathrm{CO}}_2^{+} \) (X2Πg). J Phys Chem 96:3285–3293

    Article  CAS  Google Scholar 

  83. Gellene GI (1998) \( {\mathrm{CO}}_2^{+} \): a difficult molecule for electron correlation. Chem Phys Lett 287:315–319

    Article  CAS  Google Scholar 

  84. Siegmann B, Werner U, Lutz HO, Mann R (2002) Complete coulomb fragmentation of CO2 in collisions with 5.9 MeV u−1 Xe18+ and Xe43+. J Phys B At Mol Opt Phys 35:3755–3766

    Article  CAS  Google Scholar 

  85. Aresta M, Nobile CF, Albano VG, Forni E, Manassero M (1975) New nickel-carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)bis(tricyclohexylphosphine)nickel. J Chem Soc Chem Commun 15:636–637

    Google Scholar 

  86. Kégl T, Ponec R, Kollar L (2011) Theoretical insights into the nature of nickel–carbon dioxide interactions in Ni(PH3)22-CO2). J Phys Chem C 115:12463–12473

    Article  CAS  Google Scholar 

  87. Contreras L, Paneque M, Sellin M, Carmona E, Perez PJ, Gutierrez-Puebla E, Monge A, Ruiz C (2005) Novel carbon dioxide and carbonyl carbonate complexes of molybdenum. The X-ray structures of trans-[Mo(CO2)2{HN(CH2CH2PMe2)2}(PMe3)] and [Mo32-CO3)(μ2-O)2(O)2(CO)2(H2O)(PMe3)6] · H2O. New J Chem 29:109–115

    Article  CAS  Google Scholar 

  88. Bristow GS, Hitchcock PB, Lappert DM (1981) A novel carbon dioxide complex: synthesis and crystal structure of [Nb(η-C5H4Me)2(CH2SiMe3)(η2-CO2)]. J Chem Soc Chem Commun 21:1145–1146

    Article  Google Scholar 

  89. Gibson DH (1996) The organometallic chemistry of carbon dioxide. Chem Rev 96:2063–2095

    Article  CAS  Google Scholar 

  90. Yin X, Moss JR (1999) Recent developments in the activation of carbon dioxide by metal complexes. Coord Chem Rev 181:27–59

    Article  CAS  Google Scholar 

  91. Gibson DH (1999) Carbon dioxide coordination chemistry: metal complexes and surface-bound species. What relationships? Coord Chem Rev 185–186:335–355

    Article  Google Scholar 

  92. Gambarotta S, Arena F, Floriani C, Zanazzi PF (1982) Carbon dioxide fixation: bifunctional complexes containing acidic and basic sites working as reversible carriers. J Am Chem Soc 104:5082–5092

    Article  CAS  Google Scholar 

  93. Fujita E, Creutz C, Sutin N, Brunschwig BS (1993) Carbon dioxide activation by cobalt macrocycles: evidence of hydrogen bonding between bound CO2 and the macrocycle in solution. Inorg Chem 32:2657–2662

    Article  CAS  Google Scholar 

  94. Beley M, Collin JP, Ruppert R, Sauvage JP (1986) Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. J Am Chem Soc 108:7461–7467

    Article  CAS  Google Scholar 

  95. Collin JP, Sauvage JP (1986) Electrochemical reduction of carbon dioxide mediated by molecular catalysts. Coord Chem Rev 1993:245–268

    Google Scholar 

  96. Stephan DW, Erker G (2010) Frustrated Lewis pairs. Angew Chem Int Ed 49:46–76

    Article  CAS  Google Scholar 

  97. Appelt C, Westenberg H, Bertini F, Ehlers AW, Slootweg JC, Lammertsma K, Uhl W (2011) Geminal phosphorous/aluminum-based frustrated Lewis pairs: C-H versus C≡C activation and CO2 fixation. Angew Chem Int Ed 50:3925–3928

    Article  CAS  Google Scholar 

  98. Zevaco T, Dinjus E (2010) Main group element- and transition metal-promoted carboxylations of organic substrates (alkanes, alkenes, alkynes, aromatics, and others). In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley, Weinheim

    Google Scholar 

  99. Haruki E (1982) Organic synthesis with carbon dioxide. In: Inoue S, Yamazaki N (eds) Organic and bioorganic chemistry of carbon dioxide. Halsted, New York

    Google Scholar 

  100. Takay I, Yamamoto A (1982) Organometallic reactions of carbon dioxide. In: Inoue S, Yamazaki N (eds) Organic and bioorganic chemistry of carbon dioxide. Halsted, New York

    Google Scholar 

  101. Bertini I, Luchinat C (1994) The reaction pathway of zinc enzymes and related biological catalysts. In: Bertini I, Gray HB, Lippard SJ, Valentine JS (eds) Bioinorganic chemistry. University Science, Mill Valley

    Google Scholar 

  102. Calabrese JC, Herskovitz T, Kinney JB (1983) Carbon dioxide coordination chemistry. 5. Preparation and structure of Rh(η1-CO2)(Cl)(diars)2. J Am Chem Soc 1983:5914–5915

    Article  Google Scholar 

  103. Harlow RL, Kinney JB, Herskovitz T (1980) Carbon dioxide co-ordination chemistry: preparation and X-ray crystal structure of the methoxycarbonyl complex [IrCl(CO2Me)-(Me2PCH2CH2PMe2)2]FSO3 from a CO2 adduct. J Chem Soc Chem Commun 17:813–814

    Google Scholar 

  104. Aresta M, Nobile CF (1977) Carbon dioxide-transition metal complexes.III. Rh(I)-CO2 complexes. Inorg Chim Acta 24:L49–L50

    Article  CAS  Google Scholar 

  105. Tanaka K, Ooyama D (2002) Multi-electron reduction of CO2 via Ru-CO2, -C(O)OH, -CO, -CHO, and -CH2OH species. Coord Chem Rev 226:211–218

    Article  CAS  Google Scholar 

  106. Castro-Rodriguez I, Nakai H, Zakharov LN, Rheingold AL, Meyer K (2004) A linear, O-coordinated η1-CO2 bound to uranium. Science 305:1757–1759

    Article  CAS  Google Scholar 

  107. Lam OP, Anthon C, Meyer K (2009) Influence of steric pressure on the activation of carbon dioxide and related small molecules by uranium coordination complexes. Dalton Trans 44:9677–9691

    Article  CAS  Google Scholar 

  108. Lee CH, Laitar DS, Mueller P, Sadighi JP (2007) Generation of a doubly bridging CO2 ligand and deoxygenation of CO2 by an (NHC)Ni(0) complex. J Am Chem Soc 129:13802–13803

    Article  CAS  Google Scholar 

  109. Hou XJ, He P, Li H, Wang X (2013) Understanding the adsorption mechanism of C2H2, CO2, and CH4 in metal-organic frameworks with coordinatively unsaturated metal sites. J Phys Chem C 117:2824–2834

    Article  CAS  Google Scholar 

  110. Dietzel PDC, Johnsen RE, Fjellväg H, Bordiga S, Groppo E, Chavan S, Blom R (2008) Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal–organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. J Chem Soc Chem Commun 41:5125–5127

    Google Scholar 

  111. Chang CC, Liao MC, Chang TH, Peng SM, Lee GH (2005) Aluminum-magnesium complexes with linear bridging carbon dioxide. Angew Chem Int Ed 44:7418–7420

    Article  CAS  Google Scholar 

  112. Green S, Schor H, Siegbahn P, Thaddeus P (1976) Theoretical investigation of protonated carbon dioxide. Chem Phys 17:479–485

    Article  CAS  Google Scholar 

  113. Seeger U, Seeger R, Pople JA, Schleyer Pvon R (1978) Isomeric structures of protonated carbon dioxide. Chem Phys Lett 55:399–403

    Article  CAS  Google Scholar 

  114. Scarlett M, Taylor PR (1986) Protonation of CO2, COS, CS2. Proton affinities and the structure of protonated species. Chem Phys 101:17–26

    Article  CAS  Google Scholar 

  115. Hartz N, Rasul G, Olah GA (1993) Role of oxonium, sulfonium, and carboxonium dications in superacid-catalyzed reactions. J Am Chem Soc 115:1277–1285

    Article  CAS  Google Scholar 

  116. Gronert S, Keeffe JR (2007) The protonation of allene and some heteroallenes, a computational study. J Org Chem 72:6343–6352

    Article  CAS  Google Scholar 

  117. Traeger JC, Kompe BM (1991) Determination of the proton affinity of carbon dioxide by photoionization mass spectrometry. J Mass Spectrom Org Mass Spectrom 26:209–214

    Article  CAS  Google Scholar 

  118. Bohme DK, Mackay GI, Schiff HI (1980) Determination of proton affinities from the kinetics of proton transfer reactions. The proton affinities of O2, H2, Kr, O, N2, Xe, CO2, CH4, N2O, and CO. J Chem Phys 73:4976–4986

    Article  CAS  Google Scholar 

  119. Lias SG, Liebman JF, Levin RD (1984) Evaluated gas phase basicities and proton affinities of molecules. J Phys Chem Ref Data 13:695–808

    Article  CAS  Google Scholar 

  120. Hunter EP, Lias SG (1998) Evaluated gas phase basicities and proton affinities of molecules: an update. J Phys Chem Ref Data 27:413–656

    Article  CAS  Google Scholar 

  121. Hayhurst AN, Taylor SG (2001) The proton affinities of CO and CO2 and the first hydration energy of gaseous H3O+ from mass spectrometric investigations of ions in rich flames of C2H2. Phys Chem Chem Phys 3:4359–4370

    Article  CAS  Google Scholar 

  122. Taddeus P, Guélin M, Linke RA (1981) Three new “nonterrestrial molecules”. Astrophys J 246:L41–L45

    Article  Google Scholar 

  123. Burt JA, Dunn JL, Mc Ewan MJ, Sutton MM, Roche AE, Schiff HI (1970) Some ion-molecule reactions of H3 + and the proton affinity of H2. J Chem Phys 52:6062–6075

    Article  CAS  Google Scholar 

  124. Adams NG, Smith D, Tichy M, Javahery J, Twiddy ND, Ferguson EE (1989) An absolute proton affinity scale in the 130–140 kcal mol−1 range. J Chem Phys 91:4037–4042

    Article  CAS  Google Scholar 

  125. Bogey M, Demuynek C, Destombes JL, Krupnov A (1988) Molecular structure of HOCO+. J Mol Struct 190:465–474

    Article  CAS  Google Scholar 

  126. Hammami K, Jaidane N, Lakhdar ZB, Spielfeldel A, Feautrier N (2004) New ab initio potential energy surface for the (HOCO+-He) van der Waals complex. J Chem Phys 121:1325–1330

    Article  CAS  Google Scholar 

  127. Sodupe M, Branchadell V, Rosi M, Bauschlicher CW (1997) Theoretical study of M+-CO2 and OM+CO systems for first transition row metal atoms. J Phys Chem 101:7854–7859

    Article  CAS  Google Scholar 

  128. Walker NR, Walters RS, Duncan MA (2004) Infrared photodissociation spectroscopy of V+(CO2)n and V+(CO2)nAr complexes. J Chem Phys 120:10037–10045

    Article  CAS  Google Scholar 

  129. Gregoire G, Duncan MA (2002) Infrared spectroscopy to probe structure and growth dynamics in Fe+-(CO2)n clusters. J Chem Phys 117:2120–2130

    Article  CAS  Google Scholar 

  130. Griffin JB, Armentrout PB (1997) Guided ion beam studies of the reactions of Fen + (n = 1–18) with CO2: iron cluster oxide bond energies. J Chem Phys 107:5345–5355

    Article  CAS  Google Scholar 

  131. Tjelta BL, Walter D, Armentrout PB (2001) Determination of weak Fe+–L bond energies (L=Ar, Kr, Xe, N2, and CO2) by ligand exchange reactions and collision-induced dissociation. Int J Mass Spectrom 204:7–21

    Article  CAS  Google Scholar 

  132. Walker NR, Walters RS, Grieves GA, Duncan MA (2004) Growth dynamics and intracluster reactions in Ni+(CO2)n complexes via infrared spectroscopy. J Chem Phys 121:10498–10507

    Article  CAS  Google Scholar 

  133. Herman J, Foutch JD, Davico GE (2007) Gas-phase reactivity of selected transition metal cations with CO and CO2 and the formation of metal dications using a sputter ion source. J Phys Chem A 111:2461–2468

    Article  CAS  Google Scholar 

  134. Koyanagi GK, Bohme DK (2006) Gas-phase reactions of carbon dioxide with atomic transition-metal and main-group cations: room-temperature kinetics and periodicities in reactivity. J Phys Chem A 110:1232–1241

    Article  CAS  Google Scholar 

  135. Albano P, Aresta M, Manassero M (1980) Interaction of carbon dioxide with coordinatively unsaturated rhodium(I) complexes with the ligand 1,2 bis(diphenylphosphino)ethane. Inorg Chem 19(4):1069–1072

    Article  CAS  Google Scholar 

  136. Rodgers MT, Walker B, Armentrout PB (1999) Reactions of Cu+ (1 S and 3 D) with O2, CO, CO2, N2, NO, N2O, and NO2 studied by guided ion beam mass spectrometry. Int J Mass Spectrom 182(183):99–120

    Article  Google Scholar 

  137. Zang XG, Armentrout PB (2003) Activation of O2, CO, and CO2 by Pt+: the thermochemistry of PtO+. J Phys Chem A 107:8904–8914

    Article  CAS  Google Scholar 

  138. Clemmer DE, Weber ME, Armentrout PB (1992) Reactions of aluminum (1+)(1S) with nitrogen dioxide, nitrous oxide, and carbon dioxide: thermochemistry of aluminum monoxide and aluminum monoxide (1+). J Phys Chem 96:10888–10893

    Article  CAS  Google Scholar 

  139. Armentrout PB, Beauchamp JL (1980) Reactions of U+ and UO+ with O2, CO, CO2, COS, CS2 and D2O. Chem Phys 50:27–36

    Article  CAS  Google Scholar 

  140. Hwang DY, Mebel AM (2000) Theoretical study on reforming of CO2 catalyzed with Be. Chem Phys Lett 325:639–644

    Article  CAS  Google Scholar 

  141. Solov’ev VN, Polikarpov EV, Nemukhin AV, Sergeev GB (1999) Matrix isolation and ab initio study of the reactions of magnesium atoms and clusters with CO2, C2H4, and CO2/C2H4 mixtures: formation of cyclic complexes. J Phys Chem A 103:6721–6725

    Article  CAS  Google Scholar 

  142. Hwang DY, Mebel AM (2000) Theoretical study on the reaction mechanism of CO2 with Mg. J Phys Chem A 104:7646–7650

    Article  CAS  Google Scholar 

  143. Polikarpov EV, Granovsky AA, Nemukhin AV (2001) On the potential-energy surface of the Mg + CO2 (C 2v) system. Mendeleev Commun 11:150–151

    Article  CAS  Google Scholar 

  144. Hwang DY, Mebel AM (2000) Reaction mechanism of CO2 with Ca atom: a theoretical study. Chem Phys Lett 331:526–532

    Article  CAS  Google Scholar 

  145. Burkholder TR, Andrews L, Bartlett RJ (1993) Reaction of boron atoms with carbon dioxide: matrix and ab initio calculated infrared spectra of OBCO. J Phys Chem 97:3500–3503

    Article  CAS  Google Scholar 

  146. Chin CH, Mebel AM, Hwang DY (2003) Theoretical study of the reaction mechanism of boron atom with carbon dioxide. Chem Phys Lett 375:670–675

    Article  CAS  Google Scholar 

  147. Lequere AM, Xu C, Manceron L (1991) Vibrational spectra, structures, and normal-coordinate analysis of aluminum-carbon dioxide complexes isolated in solid argon. J Phys Chem 95:3031–3037

    Article  CAS  Google Scholar 

  148. Aresta M, Quaranta E (1997) Carbon dioxide: a substitute for phosgene. ChemTech 27:32–40

    CAS  Google Scholar 

  149. Ballivet-Tkatchenko D, Dibenedetto A (2010) Synthesis of linear and cyclic carbonates. In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley, Weinheim

    Google Scholar 

  150. Quaranta E, Aresta M (2010) The chemistry of N-CO2 bonds: synthesis of carbamic acids and their derivatives, isocyanates, and ureas. In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley, Weinheim

    Google Scholar 

  151. Ohnishi YY, Nakao Y, Sato H, Sakaki S (2006) Ruthenium(II)-catalyzed hydrogenation of carbon dioxide to formic acid. Theoretical study of significant acceleration by water molecule. Organometallics 25:3352–3363

    Article  CAS  Google Scholar 

  152. Konno H, Kobayashi A, Sakamoto K, Fagalde F, Katz N, Saitoh H, Ishitani O (2000) Synthesis and properties of [Ru(tpy)(4,4′-X2bpy)H]+(tpy = 2,2′:6′,2″-terpyridine, bpy = 2,2′-bipyridine, X=H and MeO), and their reactions with CO2. Inorg Chim Acta 299:155–163

    Article  CAS  Google Scholar 

  153. Sakaki S (1990) Transition-metal complexes of nitrogen, carbon dioxide, and similar small molecules. Ab-initio MO studies of their stereochemistry and coordinate bonding nature. In: Stereochemistry of organometallic and inorganic compounds. Stereochemical Control, Bonding Steric Rearrangements, vol 4. Elservier Amsterdam, pp 95–177

    Google Scholar 

  154. Santoro M (2010) Non-molecular carbon dioxide at high pressure. In: Boldyreva E, Dera P (eds) High-pressure crystallography: from fundamental phenomena to technological applications. Springer, Dordrecht

    Google Scholar 

  155. Schettino V, Bini R, Ceppatelli M, Ciabini L, Citroni M (2005) Chemical reactions at very high pressure. Adv Chem Phys 11:105–242

    Google Scholar 

  156. Iota V, Yoo CS, Cynn H (1999) Quartzlike carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures. Science 283:1510–1513

    Article  CAS  Google Scholar 

  157. Yoo CS, Cynn H, Gygi F, Galli G, Iota V, Nicol M, Carlson S, Häusermann D, Mailhiot C (1999) Crystal structure of carbon dioxide at high pressure: “superhard” polymeric carbon dioxide. Phys Rev Lett 83:5527–5530

    Article  CAS  Google Scholar 

  158. Santoro M, Gorelli FA, Bini R, Ruocco G, Scandolo S, Crichton WA (2006) Amorphous silica-like carbon dioxide. Nature 441:857–860

    Article  CAS  Google Scholar 

  159. Yota V, Yoo CS, Klepeis JH, Jenei Z, Evans W, Cynn H (2007) Six-fold coordinated carbon dioxide VI. Nat Mater 6:34–38

    Article  CAS  Google Scholar 

  160. Datchi F, Giordano VM, Munsch P, Saitta AM (2009) Structure of carbon dioxide phase IV: breakdown of the intermediate bonding state scenario. Phys Rev Lett 103:185701

    Article  CAS  Google Scholar 

  161. Shimanouchi T (1972) Tables of molecular vibrational frequencies, consolidated volume I. NSRDS-NBS (US) 39:1–164

    Google Scholar 

  162. van Broekhuizen FA, Groot IMN, Fraser HJ, van Dishoeck EF, Schlemmer S (2006) Infrared spectroscopy of solid CO-CO2 mixtures and layers. Astron Astrophys 451:723–731

    Article  CAS  Google Scholar 

  163. Falk M, Miller AG (1992) Infrared spectrum of carbon dioxide in aqueous solution. Vib Spectrosc 4:105–108

    Article  CAS  Google Scholar 

  164. Jacox ME (1990) Vibrational and electronic energy levels of polyatomic transient molecules. Supplement 1. J Phys Chem Ref Data 19:1388–1546

    Article  Google Scholar 

  165. Kawaguchi K, Yamada C, Hirota E (1985) Diode laser spectroscopy of the \( {\mathrm{CO}}_2^{+} \) ν3 band using magnetic field modulation of the discharge plasma. J Chem Phys 82:1174–1177

    Article  CAS  Google Scholar 

  166. Carter S, Handy NC, Rosmus P, Chambaud G (1990) A variational method for the calculation of spin-rovibronic levels of Renner-Teller triatomic molecules. Mol Phys 71:605–622

    Article  CAS  Google Scholar 

  167. Jegat C, Fouassier M, Mascetti J (1991) Carbon dioxide coordination chemistry. 1. Vibrational study of trans-Mo(CO2)2(PMe3)4 and Fe(CO2) (PMe3)4. Inorg Chem 30:1521–1529

    Article  CAS  Google Scholar 

  168. Jegat C, Fouassier M, Tranquille M, Mascetti J (1991) Carbon dioxide coordination chemistry. 2. Synthesis and FTIR study of Cp2Ti(CO2) (PMe3). Inorg Chem 30:1529–1536

    Article  CAS  Google Scholar 

  169. Jegat C, Fouassier M, Tranquille M, Mascetti J, Tommasi I, Aresta M, Ingold F, Dedieu A (1993) Carbon dioxide coordination chemistry. 3. Vibrational, NMR, and theoretical studies of Ni(CO2)(PCy3)2. Inorg Chem 32:1279–1289

    Article  CAS  Google Scholar 

  170. Rabalais JW, McDonald JM, Scherr V, McGlynn SP (1971) Electron spectroscopy of isoelectronic molecules. II. Linear triatomic groupings containing sixteen valence electrons. Chem Rev 71:73–108

    Article  Google Scholar 

  171. Ogawa M (1971) Absorption cross sections of O2 and CO2 continua in the Schumann and Far-UV region. J Chem Phys 54:2550–2556

    Article  CAS  Google Scholar 

  172. England WB, Ermler WC (1979) Theoretical studies of atmospheric triatomic molecules. New ab initio results for the 1Πg-1Δu vertical state ordering in CO2. J Chem Phys 70:1711–1719

    Article  CAS  Google Scholar 

  173. Spielfeldel A, Feautrier N, Chambaud G, Rosmus P, Werner H-J (1993) The first dipole-allowed electronic transition of \( {1}^1{\Sigma}_{\mathrm{u}}^{+}-{\mathrm{X}}^1{\Sigma}_{\mathrm{g}}^{+} \) of CO2. Chem Phys Lett 216:162–166

    Article  Google Scholar 

  174. Buenker RJ, Honigmann M, Liebermann H-P, Kimura M (2000) Theoretical study of the electronic structure of carbon dioxide: bending potential curves and generalized oscillator strengths. J Chem Phys 113:1046–1054

    Article  CAS  Google Scholar 

  175. Wiberg KB, Wang Y-G, de Oliveira AE, Perera SA, Vaccaro PH (2005) Comparison of CIS and EOM-CCSD-calculated adiabatic excited states structures. Change in charge density on going to adiabatic excited states. J Phys Chem 109:466–477

    Article  CAS  Google Scholar 

  176. Eiseman BJ Jr, Harris L (1932) The transmission of liquid carbon dioxide. J Am Chem Soc 54:1782–1784

    Article  CAS  Google Scholar 

  177. Mascetti J, Tranquille M (1988) Ab initio investigation of several low-lying states of all-trans octatetraene. J Phys Chem 92:2177–2184

    Article  CAS  Google Scholar 

  178. Okabe H (1978) Photochemistry of small molecules. Wiley, New York

    Google Scholar 

  179. Slanger TG, Black G (1978) CO2 photolysis revised. J Chem Phys 68:1844–1849

    Article  CAS  Google Scholar 

  180. Zhu Y-F, Gordon RJ (1990) The production of O(3P) in the 157 nm photodissociation of CO2. J Chem Phys 92:2897–2901

    Article  CAS  Google Scholar 

  181. Matsumi Y, Shafer N, Tonukura K, Kawasaki M, Huang Y-L, Gordon RJ (1991) Doppler profiles and fine structure branching ratios of O(3PJ) from photodissociation of carbon dioxide at 157 nm. J Chem Phys 95:7311–7316

    Article  CAS  Google Scholar 

  182. Miller RL, Kable SH, Houston PL, Burak I (1992) Product distributions in the 157 nm photodissociation of CO2. J Chem Phys 96:332–338

    Article  CAS  Google Scholar 

  183. Mahata S, Bhattacharya SK (2009) Anomalous enrichment of 17O and 13C in photodissociation products of CO2: possible role of nuclear spin. J Chem Phys 130:234312 (1–17)

    Article  CAS  Google Scholar 

  184. Liger-Belair G, Prost R, Parmentier M, Jeandet P, Nuzillard J-M (2003) Diffusion coefficient of CO2 molecules as determined by 13C NMR in various carbonated beverages. J Agric Food Chem 51:7560–7563

    Article  CAS  Google Scholar 

  185. Gao G, Li F, Xu L, Liu X, Yang Y (2008) CO2 coordination by inorganic polyoxoanion in water. J Am Chem Soc 130:10838–10839

    Article  CAS  Google Scholar 

  186. Leitner W (1996) The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey. Coord Chem Rev 153:257–284

    Article  CAS  Google Scholar 

  187. Mastrorilli P, Moro G, Nobile CF, Latronico M (1992) Carbon dioxide-transition metal complexes. IV. New Ni(0)-CO2 complexes with chelating diphosphines: influence of P-Ni-P angle on complex stabilities. Inorg Chem Acta 192:189–193

    Article  CAS  Google Scholar 

  188. Aresta M, Gobetto R, Quaranta E, Tommasi I (1992) A bonding-reactivity relationship for Ni(PCy3)2(CO2): a comparative solid-state-solution nuclear magnetic resonance study (31P, 13C as a diagnostic tool to determine the mode of bonding of CO2 to a metal center). Inorg Chem 21:4286–4290

    Article  Google Scholar 

  189. Carmona E, Hughes AK, Munoz MZ, O’Hare DM, Perez PJ, Poveda ML (1991) Rotational isomerism and fluxional behavior of bis(carbon dioxide) adducts of molybdenum. J Am Chem Soc 113:9210–9218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Angelini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aresta, M., Angelini, A. (2015). The Carbon Dioxide Molecule and the Effects of Its Interaction with Electrophiles and Nucleophiles. In: Lu, XB. (eds) Carbon Dioxide and Organometallics. Topics in Organometallic Chemistry, vol 53. Springer, Cham. https://doi.org/10.1007/3418_2015_93

Download citation

Publish with us

Policies and ethics