Skip to main content

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 38))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (2002) The Tsuji–Trost reaction and related carbon–carbon bond formation reactions. In: Negishi E (ed) Handbook of organopalladium chemistry for organic synthesis, vol 2. Wiley, New York

    Google Scholar 

  2. Tsuji J (1995) Reactions of allylic compounds via π-allylpalladium complexes catalyzed by Pd(0). In: Tsuji J (ed) Palladium reagents and catalysts: innovations in organic synthesis. Wiley, Chichester

    Google Scholar 

  3. Trost BM, Lee C (2000) Asymmetric allylic alkylation reactions. In: Ojima I (ed) Catalytic asymmetric synthesis, 2nd edn. Wiley, New York

    Google Scholar 

  4. Krouzelka J et al (2008) Synthesis of 3-(2-hydroxy-1-phenylethyl)- and 3-(2-hydroxy-2-phenylethyl)adenine, DNA adducts derived from styrene. J Heterocycl Chem 45:789–795

    Article  CAS  Google Scholar 

  5. Cheng H-Y et al (2007) Regioselective palladium-catalyzed formate reduction of N-heterocyclic allylic acetates. J Org Chem 72:2674–2677

    Article  CAS  Google Scholar 

  6. Kim JM et al (2009) An expedient aralkylation of Baylis-Hillman adduct via the Pd-catalyzed decarboxylative protonation strategy. Tetrahedron Lett 50:1734–1737

    Article  CAS  Google Scholar 

  7. Tsuji J et al (1965) Organic syntheses by means of noble metal and compounds. XVII. Reaction of π-allylpalladium chloride with nucleophiles. Tetrahedron Lett 6:4387–4388

    Article  Google Scholar 

  8. Tsuji J (1969) Carbon-carbon bond formation via palladium complexes. Acc Chem Res 2:144–152

    Article  CAS  Google Scholar 

  9. Trost BM, Fullerton TJ (1973) New synthetic reactions. Allylic alkylation. J Am Chem Soc 95:292–294

    Article  CAS  Google Scholar 

  10. Trost BM (1977) Organopalladium intermediates in organic synthesis. Tetrahedron 33:2615–2649

    Article  CAS  Google Scholar 

  11. Frost CG et al (1992) Selectivity in palladium catalyzed allylic substitution. Tetrahedron Asymmetry 3:1089–1122

    Article  CAS  Google Scholar 

  12. Trost BM, Crawley ML (2003) Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem Rev 103:2921–2943

    Article  CAS  Google Scholar 

  13. Trost BM (2004) Asymmetric allylic alkylation, an enabling methodology. J Org Chem 69:5813–5837

    Article  CAS  Google Scholar 

  14. Nicolaou KC et al (2005) Palladium-catalyzed cross-coupling reactions in total synthesis. Angew Chem Int Ed 44:4442–4489

    Article  CAS  Google Scholar 

  15. Svensen N et al (2007) Memory effects in palladium-catalyzed allylic alkylations of 2-cyclohexen-1-yl acetate. Adv Synth Catal 349:2631–2640

    Article  CAS  Google Scholar 

  16. Yan B, Spilling CD (2008) Synthesis of cyclopentenones via intramolecular HWE and the palladium-catalyzed reactions of allylic hydroxy phosphonate derivatives. J Org Chem 73:5385–5396

    Article  CAS  Google Scholar 

  17. Trost BM, Thaisrivongs DA (2009) Palladium-catalyzed regio-, diastereo-, and benzylic allylation of 2-substituted pyridines. J Am Chem Soc 131:12056–12057

    Article  CAS  Google Scholar 

  18. Fristrup P et al (2008) On the nature of the intermediates and the role of chloride ions in Pd-catalyzed allylic alkylations: added insight from density functional theory. J Phys Chem A 112:12862–12867

    Article  CAS  Google Scholar 

  19. Kraemer K et al (2009) A straightforward approach towards glycoamino acids and glycopeptides via Pd-catalyzed allylic alkylation. Org Biomol Chem 7:103–110

    Article  CAS  Google Scholar 

  20. Trost BM, Crawley ML (2011) Enantioselective allylic substitutions in natural product synthesis. Top Organomet Chem. doi: 10.1007/3418_2011_13

    Google Scholar 

  21. Jacquet O et al (2009) Enantiotopic discrimination in palladium-mediated nucleophilic substitutions on achiral substrates: chiral ligand versus chiral nucleophile. Synthesis 3047–3050

    Google Scholar 

  22. Lange DA, Goldfuss B (2007) Electronic differentiation competes with transition state sensitivity in palladium-catalyzed allylic substitutions. Beilstein J Org Chem 3(36):2007–2086

    Google Scholar 

  23. Guiry PJ, Saunders CP (2004) The development of bidentate P, N ligands for asymmetric catalysis. Adv Synth Catal 346:497–537

    Article  CAS  Google Scholar 

  24. Flanagan SP, Guiry PJ (2006) Substituent electronic effects in chiral ligands for asmmetric catalysis. J Organomet Chem 691:2125–2154

    Article  CAS  Google Scholar 

  25. Berens U et al (1996) Transacetalization of diethyl tartrate with acetals of α-dicarbonyl compounds: Aa simple access to a new class of C2-symmetric auxiliaries and ligands. J Org Chem 60:8204–8208

    Article  Google Scholar 

  26. Marques CS, Burke AJ (2007) Palladium catalyzed enantioselective asymmetric allylic alkylations using the Berens' DIOP analogue. Tetrahedron Asymmetry 18:1804–1808

    Article  CAS  Google Scholar 

  27. Schaeffner B et al (2008) Organic carbonates as alternative solvents for palladium-catalyzed substitution reactions. Chem Sus Chem 1:249–253

    CAS  Google Scholar 

  28. Butts CP et al (2009) Structure-based rationale for selectivity in the asymmetric allylic alkylation of cycloalkenyl esters employing the Trost ‘Standard Ligand' (TSL): isolation, analysis and Aalkylation of the monomeric form of the cationic η3-cyclohexenyl complex [(η3-c-C6H9)Pd(TSL)]+. J Am Chem Soc 131:9945–9957

    Article  CAS  Google Scholar 

  29. Amatore C et al (2007) On the formation of Pd(II) complexes of Trost modular ligand involving N-H activation or P, O coordination in Pd-catalyzed allylic alkylations. J Organomet Chem 692:1457–1464

    Article  CAS  Google Scholar 

  30. Fuchs S et al (2007) A highly stereoselective divergent synthesis of bicyclic models of photoreactive sesquiterpene lactones. Eur J Org Chem 7:1145–1152

    Article  CAS  Google Scholar 

  31. Gais HJ (2007) Palladium-catalyzed allylic alkylation of sulfur and oxygen nucleophiles – asymmetric synthesis, kinetic resolution and dynamic kinetic resolution. In: Enders D, Jaeger KE (eds) Asymmetric synthesis with chemical and biological methods. Wiley-VCH, Weinheim

    Google Scholar 

  32. Gontcharov AV et al (1999) tert-Butylsulfonamide. A new nitrogen source for catalytic aminohydroxylation and aziridination of olefins. Org Lett 1:783–786

    Article  CAS  Google Scholar 

  33. Trost BM et al (2009) Palladium-catalyzed decarboxylative asymmetric allylic alkylation of enol carbonates. J Am Chem Soc 131:18343–18357

    Article  CAS  Google Scholar 

  34. Trost BM, Thaisrivongs DA (2008) Strategy for employing unstabilized nucleophiles in palladium-catalyzed asymmetric allylic alkylations. J Am Chem Soc 130:14092–14093

    Article  CAS  Google Scholar 

  35. Trost BM et al (2008) Ligand controlled highly regio- and enantioselective synthesis of α-acyloxyketones by palladium-catalyzed allylic alkylation of 1,2-enediol carbonates. J Am Chem Soc 130:11852–11853

    Article  CAS  Google Scholar 

  36. Coppola GM, Schuster HF (1997) α-hydroxy acids in enantioselective syntheses. VCH, Weinheim

    Book  Google Scholar 

  37. Iwabushi Y et al (1999) Chiral amine-catalyzed asymmetric Baylis−Hillman reaction: a reliable route to highly enantiomerically enriched (α-methylene-β-hydroxy)esters. J Am Chem Soc 121:10219–10220

    Article  CAS  Google Scholar 

  38. Trost BM, Toste FD (1999) Regio- and enantioselective allylic alkylation of an unsymmetrical substrate: a working model. J Am Chem Soc 121:4545–4554

    Article  CAS  Google Scholar 

  39. Butti P et al (2008) Palladium-catalyzed enantioselective allylic phosphination. Angew Chem Int Ed 47:4878–4881

    Article  CAS  Google Scholar 

  40. Liu D et al (2007) Novel C2-symmetric planar chiral diphosphine ligands and their application in Pd-catalyzed asymmetric allylic substitutions. J Org Chem 72:6992–6997

    Article  CAS  Google Scholar 

  41. Xie F et al (2008) Reversal in enantioselectivity for the palladium-catalyzed asymmetric allylic substitution with novel metallocene-based planar chiral diphosphine ligands. Tetrahedron Lett 49:1012–1015

    Article  CAS  Google Scholar 

  42. Hayashi T et al (1974) Asymmetric catalytic hydrosilylation of ketones: preparation of chiral ferrocenylphosphines as chiral ligands. Tetrahedron Lett 15:4405–4408

    Article  Google Scholar 

  43. Fukuda Y et al (2007) Asymmetric construction of quaternary carbon stereocenter by Pd-hemilabile ligand-catalyzed allylic substitution. Tetrahedron Lett 48:3389–3391

    Article  CAS  Google Scholar 

  44. Sebesta R, Bilcik F (2009) Imidazolium-tagged ferrocenyl diphosphanes in allylic substitution with heteroatom nucleophiles. Tetrahedron Asymmetry 20:1892–1896

    Article  CAS  Google Scholar 

  45. Braun M et al (2008) Palladium-catalyzed diastereoselective and enantioselective allylic alkylations of ketone enolates. Adv Synth Catal 350:303–314

    Article  CAS  Google Scholar 

  46. Bantreil X et al (2009) Enantioselective γ-lactam synthesis via palladium-catalyzed intramolecular asymmetric allylic alkylation. Synlett 9:1441–1444

    Google Scholar 

  47. Giambastiani G et al (1998) A new palladium-catalyzed intramolecular allylation to pyrrolidin-2-ones. J Org Chem 63:804–807

    Article  CAS  Google Scholar 

  48. Fukuda Y et al (2007) Development of novel hemilabile segphos P-P=O ligands. Chem Pharm Bull 55:955–956

    Article  CAS  Google Scholar 

  49. Ohmori K et al (2007) Two isolable conformers of dihydropentahelicenediol derivatives: stereochemical property and its utility for asymmetric reactions. Chem Lett 36:328–329

    Article  CAS  Google Scholar 

  50. Sharma RK et al (2008) Asymmetric allylic alkylation by palladium-bisphosphinites. Tetrahedron Asymmetry 19:655–663

    Article  CAS  Google Scholar 

  51. Balanta Castillo A et al (2008) An outstanding palladium system containing a C2-symmetrical phosphite ligand for enantioselective allylic substitution processes. Chem Commun 46:6197–6199

    Article  Google Scholar 

  52. Sanhes D et al (2009) New chiral diphosphites derived from substituted 9,10-dihydroanthracene. Applications in asymmetric catalytic processes. Tetrahedron Asymmetry 20:1009–1014

    Article  CAS  Google Scholar 

  53. Wassenaar J et al (2009) INDOLPhosphole and INDOLPhos palladium-allyl complexes in asymmetric allylic alkylations. Organomet 28:2724–2734

    Article  CAS  Google Scholar 

  54. Raluy E et al (2007) Sugar-based diphosphoroamidite as a promising new class of ligands in Pd-catalyzed asymmetric allylic alkylation reactions. J Org Chem 72:2842–2850

    Article  CAS  Google Scholar 

  55. Raluy E et al (2007) First chiral phosphoroamidite-phosphite ligands for highly enantioselective and versatile Pd-catalyzed asymmetric allylic substitution reactions. Org Lett 9:49–52

    Article  CAS  Google Scholar 

  56. Mata Y et al (2007) Pyranoside phosphite-phosphoramidite ligands for Pd-catalyzed asymmetric allylic alkylation reactions. Tetrahedron Asymmetry 17:3282–3287

    Article  CAS  Google Scholar 

  57. Raluy E et al (2009) Modular furanoside phosphite-phosphoroamidites, a readily available ligand library for asymmetric palladium-catalyzed allylic substitution reactions. Origin of enantioselectivity. Adv Synth Catal 351:1648–1670

    Article  CAS  Google Scholar 

  58. Pamies O et al (2007) New highly effective phosphite-phosphoramidite ligands for palladium-catalyzed asymmetric allylic alkylation reactions. Adv Synth Catal 349:836–840

    Article  CAS  Google Scholar 

  59. Pamies O, Dieguez M (2008) Screening of a phosphite-phosphoramidite ligand library for palladium-catalysed asymmetric allylic substitution reactions: the origin of enantioselectivity. Chem Eur J 14:944–960

    Article  CAS  Google Scholar 

  60. Gavrilov KN et al (2008) A P*-chiral bisdiamidophosphite ligand with a 1,4:3,6-dianhydro-D-mannite backbone and its application in asymmetric catalysis. Tetrahedron Lett 49:3120–3123

    Article  CAS  Google Scholar 

  61. Gavrilov KN et al (2009) P*, P*-Bidentate diastereoisomeric bisdiamidophosphites based on N-benzyltartarimide and their applications in asymmetric catalytic processes. Tetrahedron Asymmetry 20:2490–2496

    Article  CAS  Google Scholar 

  62. Imamoto T et al (2007) t-Bu-QuinoxP* ligand: applications in asymmetric Pd-catalyzed allylic substitution and Ru-catalyzed hydrogenation. J Org Chem 72:7413–7416

    Article  CAS  Google Scholar 

  63. Slagt VF et al (2007) Fine-tuning ligands for catalysis using supramolecular strategies. Eur J Inorg Chem 4653–4662

    Google Scholar 

  64. Slagt VF et al (2007) Supramolecular bidentate phosphorus ligands based on bis-zinc(II) and bis-tin(IV) porphyrin building blocks. Dalton Trans 2302–2310

    Google Scholar 

  65. Pierron J et al (2008) Artificial metalloenzymes for asymmetric allylic alkylation on the basis of the biotin-avidin technology. Angew Chem Int Ed 47:701–705

    Article  CAS  Google Scholar 

  66. Fukuzawa S-I et al (2007) ClickFerrophos: new chiral ferrocenyl phosphine ligands synthesized by Click chemistry and the use of their metal complexes as catalysts for asymmetric hydrogenation and allylic substitution. Org Lett 9:5557–5560

    Article  CAS  Google Scholar 

  67. Zhao X et al (2009) Enamines: efficient nucleophiles for the palladium-catalyzed asymmetric allylic alkylation. Tetrahedron 65:512–517

    Article  CAS  Google Scholar 

  68. Liu D et al (2007) The synthesis of novel C2-symmetric P, N-chelation ruthenocene ligands and their application in palladium-catalyzed asymmetric allylic substitution. Tetrahedron Lett 48:585–588

    Article  CAS  Google Scholar 

  69. Zhang K et al (2008) Highly enantioselective palladium-catalyzed alkylation of acyclic amides. Angew Chem Int Ed 47:1741–1744

    Article  CAS  Google Scholar 

  70. Zheng W-H et al (2007) Highly regio-, diastereo-, and enantioselective Pd-catalyzed allylic alkylation of acyclic ketone enolates with monosubstituted allyl substrates. J Am Chem Soc 129:7718–7719

    Article  CAS  Google Scholar 

  71. Fukuzawa S-I et al (2007) Preparation of chiral homoannularly bridged N, P-ferrocenyl ligands by intramolecular coupling of 1,5-dilithioferrocenes and their application in asymmetric allylic substitution reactions. Eur J Org Chem 33:5540–5545

    Article  Google Scholar 

  72. Sebesta R et al (2008) [3]Ferrocenophane ligands with an inserted methylene group. Eur J Org Chem 31:5157–5161

    Article  Google Scholar 

  73. Jiang B et al (2008) [2.2]Paracyclophane-derived chiral P, N-ligands: design, synthesis, and application in Palladium-catalyzed asymmetric allylic alkylation. J Org Chem 73:7833–7836

    Article  CAS  Google Scholar 

  74. Ruzziconi R et al (2007) Quinolinophane-derived alkyldiphenylphosphines: two homologous P, N-planar chiral ligands for palladium-catalysed allylic alkylation. Tetrahedron Asymmetry 18:1742–1749

    Article  CAS  Google Scholar 

  75. Fleming WJ et al (2009) Axially chiral P-N ligands for the copper catalyzed.beta.-borylation of α, β-unsaturated esters. Org Biomol Chem 7:2520–2524

    Article  CAS  Google Scholar 

  76. Flanagan SP et al (2005) The preparation and resolution of 2-(2-pyridyl)- and 2-(2-pyrazinyl)-quinazolinap and their application in palladium-catalyzed allylic substitution. Tetrahedron 61:9808–9821

    Article  CAS  Google Scholar 

  77. Connolly DJ et al (2004) Preparation and resolution of a modular class of axially chiral quinazoline-containing ligands and their application in asymmetric Rhodium-catalyzed olefin hydroboration. J Org Chem 69:6572–6589

    Article  CAS  Google Scholar 

  78. McCarthy M, Guiry PJ (2000) A new quinazoline-containing axially chiral ligand for asymmetric catalysis. Polyhedron 19:541–543

    Article  CAS  Google Scholar 

  79. Lacey PM et al (2000) Synthesis and resolution of 2-methyl-Quinazolinap, a new atropisomeric phosphinamine ligand for asymmetric catalysis. Tetrahedron Lett 41:2475–2478

    Article  CAS  Google Scholar 

  80. McCarthy M et al (1999) The preparation and resolution of 2-phenyl-quinazolinap, a new atropisomeric phosphinamine ligand for asymmetric catalysis. Tetrahedron Asymmetry 10:2797–2807

    Article  CAS  Google Scholar 

  81. Fekner T et al (2008) Synthesis, resolution, and application of cyclobutyl- and adamantyl-quinazolinap ligands. Eur J Org Chem 30:5055–5066

    Article  Google Scholar 

  82. Maxwell AC et al (2008) Electronically varied quinazolinaps for asymmetric catalysis. Org Biomol Chem 6:3848–3853

    Article  CAS  Google Scholar 

  83. Zalubovskis R et al (2008) Self-adaptable catalysts: substrate-dependent ligand configuration. J Am Chem Soc 130:1845–1855

    Article  CAS  Google Scholar 

  84. Nemoto T, Hamada Y (2007) Pd-catalyzed asymmetric allylic substitution reactions using P-chirogenic diaminophosphine oxides: DIAPHOXs. Chem Rec 7:150–158

    Article  CAS  Google Scholar 

  85. Cardillo G et al (2003) Aziridines and oxazolines: valuable intermediates in the synthesis of unusual amino acids. Aldrichimica Acta 36:39–50

    CAS  Google Scholar 

  86. Maki K et al (2007) Pd-Catalyzed allylic alkylation of secondary nitroalkanes. Tetrahedron 63:4250–4257

    Article  CAS  Google Scholar 

  87. Lamac M et al (2009) Preparation, coordination and catalytic use of planar-chiral monocarboxylated dppf analogues. New J Chem 33:1549–1562

    Article  CAS  Google Scholar 

  88. Belanger E et al (2008) Unexpected effect of the fluorine atom on the optimal ligand-to-palladium ratio in the enantioselective Pd-catalyzed allylation reaction of fluorinated enol carbonates. Chem Commun 28:3251–3253

    Article  CAS  Google Scholar 

  89. Schulz SR, Blechert S (2007) Palladium-catalyzed synthesis of substituted cycloheptane-1,4-diones by an asymmetric ring-expanding allylation (AREA). Angew Chem Int Ed 46:3966–3970

    Article  CAS  Google Scholar 

  90. Popa D et al (2007) Phosphinooxazolines derived from 3-amino-1,2-diols: highly efficient modular P-N ligands. Adv Synth Catal 349:2265–2278

    Article  CAS  Google Scholar 

  91. Tian F et al (2009) Phosphine-oxazoline ligands with an axial-unfixed biphenyl backbone: the effects of the substituent at oxazoline ring and P phenyl ring on Pd-catalyzed asymmetric allylic alkylation. Tetrahedron 65:9609–9615

    Article  CAS  Google Scholar 

  92. Dieguez M, Pamies O (2008) Modular phosphite-oxazoline/oxazine ligand library for asymmetric Pd-catalyzed allylic substitution reactions: scope and limitations-origin of enantioselectivity. Chem Eur J 14:3653–3669

    Article  CAS  Google Scholar 

  93. Yonehara K et al (1999) Palladium-catalyzed asymmetric allylic substitution reactions using new chiral phosphinite-oxazoline ligands derived from D-glucosamine. J Org Chem 64:9374–9380

    Article  CAS  Google Scholar 

  94. Yonehara K et al (1999) Palladium-catalysed asymmetric allylic alkylation using new chiral phosphinite–nitrogen ligands derived from D-glucosamine. Chem Commun 5:415–416

    Article  Google Scholar 

  95. Mata Y et al (2009) Pyranoside phosphite-oxazoline ligand library: highly efficient modular P,N ligands for palladium-catalyzed allylic substitution reactions. A study of the key palladium allyl intermediates. Adv Synth Catal 351:3217–3234

    Article  CAS  Google Scholar 

  96. Bronger RPJ, Guiry PJ (2007) Aminophosphine-oxazoline and phosphoramidite-oxazoline ligands and their application in asymmetric catalysis. Tetrahedron Asymmetry 18:1094–1102

    Article  CAS  Google Scholar 

  97. Guo X-F, Kim G-J (2008) Highly enantioselective allylic alkylation catalyzed by new P, N-chelate ligands from L-valinol. React Kinet Catal Lett 93:325–332

    Article  CAS  Google Scholar 

  98. Meng X et al (2009) Novel pyridine-phosphite ligands for Pd-catalyzed asymmetric allylic substitution reaction. Catal Commun 10:950–954

    Article  CAS  Google Scholar 

  99. Meng X et al (2009) Asymmetric hydrogenation and allylic substitution reaction with novel chiral pinene-derived N, P-ligands. Tetrahedron Asymmetry 20:1402–1406

    Article  CAS  Google Scholar 

  100. Liu Q-B, Zhou Y-G (2007) Synthesis of chiral cyclohexane-backbone P, N-ligands derived from pyridine and their applications in asymmetric catalysis. Tetrahedron Lett 48:2101–2104

    Article  CAS  Google Scholar 

  101. Shaffer AR, JaR S (2009) Reactivity of (3-iminophosphine)palladium(II) complexes: evidence of hemilability. Organomet 28:2494–2504

    Article  CAS  Google Scholar 

  102. Huang J-D et al (2007) Readily available phosphine-imine ligands from alpha-phenylethylamine for highly efficient Pd-catalyzed asymmetric allylic alkylation. J Mol Catal A Chem 270:127–131

    Article  CAS  Google Scholar 

  103. Gavrilov K et al (2007) P,N-bidentate phosphites with a chiral ketimine fragment, their application in enantioselective allylic substitution and comparison with phosphine analogues. Synthesis 1717–1723

    Google Scholar 

  104. Gavrilov KN et al (2007) Ferrocenyliminophosphites as easy-to-modify ligands for asymmetric catalysis. Eur J Org Chem 29:4940–4947

    Article  Google Scholar 

  105. Lemasson F et al (2007) Synthesis of 1,5-P, N-phosphino-sulfoximines through phospha-Michael reaction of alkenyl sulfoximines and their evaluation as ligands in palladium-catalyzed allylic alkylation. Tetrahedron Lett 48:8752–8756

    Article  CAS  Google Scholar 

  106. Huang JD et al (2008) Synthesis of novel chiral phosphine-triazine ligand derived from α-phenylethylamine for Pd-catalyzed asymmetric allylic alkylation. Chinese Chem Lett 19:261–263

    Article  CAS  Google Scholar 

  107. Wang Q-F et al (2008) Facile one-pot synthesis of cinchona alkaloid-based P, N ligands and their application to Pd-catalyzed asymmetric allylic alkylation. Tetrahedron Asymmetry 19:2447–2450

    Article  CAS  Google Scholar 

  108. Schnitzler V et al (2008) Nitrogen-based chirality effects in novel mixed phosphorus/nitrogen ligands applied to palladium-catalyzed allylic substitutions. Organomet 27:5997–6004

    Article  CAS  Google Scholar 

  109. Butts CP et al (1999) Robust and catalytically active mono- and bis-Pd-complexes of the Trost modular ligand. Chem Commun 17:1707–1708

    Article  Google Scholar 

  110. Marinho VR et al (2008) Novel chiral P, O-ligands for homogeneous Pd(0) catalyzed asymmetric allylic alkylation reactions. Tetrahedron Asymmetry 19:454–458

    Article  CAS  Google Scholar 

  111. Glegola K et al (2007) Influence on the enantioselectivity in allylic alkylation of the anomeric position of the phosphine-amide ligands derived from D-glucosamine. Tetrahedron 63:7133–7141

    Article  CAS  Google Scholar 

  112. Glegola K et al (2009) Palladium-catalyzed asymmetric allylic alkylation using phosphine-amide derived from chiral trans-2-aminocyclohexanol. Phosphorus Sulfur Silicon Relat Elem 184:1065–1075

    Article  CAS  Google Scholar 

  113. Ropartz L et al (2007) Phosphine containing oligonucleotides for the development of metallodeoxyribozymes. Chem Commun 15:1556–1558

    Article  CAS  Google Scholar 

  114. Lamac M et al (2007) Preparation of chiral phosphinoferrocene carboxamide ligands and their application to palladium-catalyzed asymmetric allylic alkylation. Organomet 26:5042–5049

    Article  CAS  Google Scholar 

  115. Lamac M et al (2007) Synthesis, coordination and catalytic utility of novel phosphanyl-ferrocenecarboxylic ligands combining planar and central chirality. Eur J Inorg Chem 16:2274–2287

    Article  CAS  Google Scholar 

  116. Jiang B, Huang Z-G (2007) Chiral P, O-ligands derived from N, O-phenylene-prolinols for palladium-catalyzed asymmetric allylic alkylation. Tetrahedron Lett 48:1703–1706

    Article  CAS  Google Scholar 

  117. Chen J et al (2009) Palladium-catalyzed asymmetric allylic nucleophilic substitution reactions using chiral tert-butanesulfinylphosphine ligands. Tetrahedron Asymmetry 20:1953–1956

    Article  CAS  Google Scholar 

  118. Routaboul L et al (2007) New phosphorus dendrimers with chiral ferrocenyl phosphine-thioether ligands on the periphery for asymmetric catalysis. J Organomet Chem 692:1064–1073

    Article  CAS  Google Scholar 

  119. Cheung HY et al (2007) Enantioselective Pd-catalyzed allylic alkylation of indoles by a new class of chiral ferrocenyl P/S ligands. Org Lett 9:4295–4298

    Article  CAS  Google Scholar 

  120. Kato M et al (2009) Synthesis of novel ferrocenyl-based P, S ligands (ThioClickFerrophos) and their use in Pd-catalyzed asymmetric allylic substitutions. Eur J Org Chem 30:5232–5238

    Article  CAS  Google Scholar 

  121. Lam FL et al (2008) Palladium-(S, pR)-ferroNPS-catalyzed asymmetric allylic etherification: electronic effect of nonconjugated substituents on benzylic alcohols on enantioselectivity. Angew Chem Int Ed 47:1280–1283

    Article  CAS  Google Scholar 

  122. Khiar N et al (2008) New sulfur-phosphine ligands derived from sugars: synthesis and application in palladium-catalyzed allylic alkylation and in rhodium asymmetric hydrogenation. ARKIVOC 8:211–224

    Google Scholar 

  123. Thimmaiah M et al (2007) Novel benzoferrocenyl chiral ligands: Synthesis and evaluation of their suitability for asymmetric catalysis. J Organomet Chem 692:1956–1962

    Article  CAS  Google Scholar 

  124. Stepnicka P et al (2008) Planar chiral alkenylferrocene phosphanes: Preparation, structural characterization and catalytic use in asymmetric allylic alkylation. J Organomet Chem 693:446–456

    Article  CAS  Google Scholar 

  125. Hara O et al (2007) Synthesis of 2,6-dimethyl-9-aryl-9-phosphabicyclo[3.3.1]nonanes: their application to asymmetric synthesis of chiral tetrahydroquinolines and relatives. Tetrahedron 63:6170–6181

    Article  CAS  Google Scholar 

  126. Gavrilov KN et al (2007) MOP-type binaphthyl phosphite and diamidophosphite ligands and their application in catalytic asymmetric transformations. Adv Synth Catal 349:1085–1094

    Article  CAS  Google Scholar 

  127. Qiao X-C et al (2009) From allylic alcohols to chiral tertiary homoallylic alcohol: palladium-catalyzed asymmetric allylation of isatins. Tetrahedron Asymmetry 20:1254–1261

    Article  CAS  Google Scholar 

  128. Gavrilov KN et al (2007) Chiral ionic phosphites and diamidophosphites: a novel group of efficient ligands for asymmetric catalysis. Adv Synth Catal 349:609–616

    Article  CAS  Google Scholar 

  129. Gavrilov KN et al (2007) Diastereomeric P*-chiral diamidophosphites with terpene fragments in asymmetric catalysis. Tetrahedron Asymmetry 18:2557–2564

    Article  CAS  Google Scholar 

  130. Lyubimov SE et al (2009) The use of a new carboranylamidophosphite ligand in the asymmetric Pd-catalysed allylic alkylation in organic solvents and supercritical carbon dioxide. J Organomet Chem 694:3047–3049

    Article  CAS  Google Scholar 

  131. Pignataro L et al (2009) Combination of a binaphthol-derived phosphite and a C1-symmetric phosphinamine generates heteroleptic catalysts in Rh- and Pd-mediated reactions. Chem Commun 24:3539–3541

    Article  CAS  Google Scholar 

  132. Birkholz M-N et al (2007) Enantioselective hydrogenation with self-assembling rhodium phosphane catalysts: influence of ligand structure and solvent. Chem Eur J 13:5896–5907

    Article  CAS  Google Scholar 

  133. Birkholz M-N et al (2007) Enantioselective Pd-catalyzed allylic amination with self-assembling and non-assembling monodentate phosphine ligands. Tetrahedron Asymmetry 18:2055–2060

    Article  CAS  Google Scholar 

  134. Bayardon J, Sinou D (2008) Enantiopure fluorous 1,2-diaryl-1,2-diaminoethanes; synthesis and applications in asymmetric organometallic catalysis. ARKIVOC 7:26–35

    Google Scholar 

  135. Gualandi A et al (2010) Stereoselective synthesis of substituted 1,2-ethylenediaziridines and their use as ligands in palladium-catalyzed asymmetric allylic alkylation. Tetrahedron 66:715–720

    Article  CAS  Google Scholar 

  136. Giulio Albano V et al (2007) Synthesis, structural characterization, and catalytic activity of chiral diamine and diimine Pd(II)-complexes. Inorg Chimica Acta 360:1000–1008

    Article  CAS  Google Scholar 

  137. Wojaczynska E, Skarzewski J (2008) Chelating 2-azanorbornyl derivatives as effective nitrogen-nitrogen and nitrogen-chalcogen donating ligands in palladium-catalyzed asymmetric allylic alkylation. Tetrahedron Asymmetry 19:2252–2257

    Article  CAS  Google Scholar 

  138. Niu J-L et al (2009) Origin of enantioselectivity with heterobidentate sulfide-tertiary amine (sp3) ligands in palladium-catalyzed allylic substitution. Tetrahedron 65:8869–8878

    Article  CAS  Google Scholar 

  139. Bateman L et al (2008) New chiral diamide ligands: synthesis and application in allylic alkylation. Tetrahedron Asymmetry 19:391–396

    Article  CAS  Google Scholar 

  140. Bastero A et al (2007) First allylpalladium systems containing chiral imidazolylpyridine ligands - structural studies and catalytic behavior. Eur J Inorg Chem 1:132–139

    Article  CAS  Google Scholar 

  141. Shibatomi K et al (2009) Development of a new chiral spiro oxazolinylpyridine ligand (Spymox) for asymmetric catalysis. Synlett 241–244

    Google Scholar 

  142. Foltz C et al (2007) Using a tripod as a chiral chelating ligand: chemical exchange between equivalent molecular structures in palladium catalysis with 1,1,1-tris(oxazolinyl)ethane (“trisox”). Chem Eur J 13:5994–6008

    Article  CAS  Google Scholar 

  143. Betz A et al (2008) (N, N) vs. (N, S) chelation of palladium in asymmetric allylic substitution using bis(thiazoline) ligands: A theoretical and experimental study. J Organomet Chem 693:2499–2508

    Article  CAS  Google Scholar 

  144. Martin E, Dieguez M (2007) Thioether containing ligands for asymmetric allylic substitution reactions. C R Chim 10:188–205

    Article  CAS  Google Scholar 

  145. Vargas F et al (2008) Modular chiral beta -selenium-, sulfur-, and tellurium amides: synthesis and application in the palladium-catalyzed asymmetric allylic alkylation. Tetrahedron 64:392–398

    Article  CAS  Google Scholar 

  146. Sehnem JA et al (2008) Modular synthesis of chiral N-protected beta -seleno amines and amides via cleavage of 2-oxazolidinones and application in palladium-catalyzed asymmetric allylic alkylation. Synthesis 1262–1268

    Google Scholar 

  147. Zielinska-Blajet M et al (2007) Chiral phenylselenyl derivatives of pyrrolidine and cinchona alkaloids: nitrogen-selenium donating ligands in palladium-catalyzed asymmetric allylic alkylation. Tetrahedron Asymmetry 18:131–136

    Article  CAS  Google Scholar 

  148. Wojaczynska E, Skarzewski J (2008) Novel C2-symmetric chiral ligands: enantioselective transformation of cyclic 1,2-diols into 1,2-bis(phenylsulfenyl) and 1,2-bis(phenylselenyl) derivatives. Tetrahedron Asymmetry 19:593–597

    Article  CAS  Google Scholar 

  149. Robe E et al (2008) Diphosphine sulfides derived from 2,2'-biphosphole: novel chiral S,S ligands for palladium-catalyzed asymmetric allylic substitution. Dalton Trans 2894–2898

    Google Scholar 

  150. Wang C-Y et al (2007) Palladium(II) complexes containing a bulky pyridinyl N-heterocyclic carbene ligand: Preparation and reactivity. J Organomet Chem 692:3976–3983

    Article  CAS  Google Scholar 

  151. Yeagley AA, Chruma JJ (2007) C-C Bond-forming reactions via Pd-mediated decarboxylative α-imino anion generation. Org Lett 9:2879–2882

    Article  CAS  Google Scholar 

  152. Visentin F, Togni A (2007) Synthesis and characterization of palladium(II) π-allyl complexes with chiral phosphinocarbene ligands. Kinetics and mechanism of allylic amination. Organomet 26:3746–3754

    Article  CAS  Google Scholar 

  153. Peng HM et al (2008) Synthesis, structures, and solution dynamics of palladium complexes of quinoline-functionalized N-heterocyclic carbenes. Inorg Chem 47:8031–8043

    Article  CAS  Google Scholar 

  154. Merzouk M et al (2007) Synthesis of chiral iminoalkyl functionalized N-heterocyclic carbenes and their use in asymmetric catalysis. Tetrahedron Lett 48:8914–8917

    Article  CAS  Google Scholar 

  155. Flahaut A et al (2007) Palladium catalyzed asymmetric allylic alkylation using chelating N-heterocyclic carbene-amino ligands. Tetrahedron Asymmetry 18:229–236

    Article  CAS  Google Scholar 

  156. Christensen CA, Meldal M (2007) Solid-phase synthesis of a peptide-based P, S-ligand system designed for generation of combinatorial catalyst libraries. J Comb Chem 9:79–85

    Article  CAS  Google Scholar 

  157. Uozumi Y (2007) Asymmetric allylic substitution of cycloalkenyl esters in water with an amphiphilic resin-supported chiral palladium complex. Pure Appl Chem 79:1481–1489

    Article  CAS  Google Scholar 

  158. Uozumi Y, Suzuka T (2008) π-Allylic sulfonylation in water with amphiphilic resin-supported palladium-phosphine complexes. Synthesis 12:1960–1964

    Article  CAS  Google Scholar 

  159. Uozumi Y (2008) Heterogeneous asymmetric catalysis in water with amphiphilic polymer-supported homochiral palladium complexes. Bull Chem Soc Jpn 81:1183–1195

    Article  CAS  Google Scholar 

  160. Swennenhuis BHG et al (2009) Supported chiral monodentate ligands in rhodium-catalysed asymmetric hydrogenation and palladium-catalysed asymmetric allylic alkylation. Eur J Org Chem 33:5796–5803

    Article  CAS  Google Scholar 

  161. Jiang Z-D, Meng Z-H (2007) Polymer-supported chiral monodentate phosphoramidites in palladium-catalyzed allylic alkylation reactions. Chinese J Chem 25:542–545

    Article  CAS  Google Scholar 

  162. Reimann S et al (2007) Enantioselective allylic substitution on Pd/Al2O3 modified by chiral diphosphines. J Catal 252:30–38

    Article  CAS  Google Scholar 

  163. Reimann S et al (2008) A new, efficient heterogeneous Pd catalyst for enantioselective allylic substitution. J Catal 254:79–83

    Article  CAS  Google Scholar 

  164. Dieguez M et al (2008) Palladium nanoparticles in allylic alkylations and Heck reactions: the molecular nature of the catalyst studied in a membrane reactor. Adv Synth Catal 350:2583–2598

    Article  CAS  Google Scholar 

  165. Favier I et al (2007) Palladium catalytic species containing chiral phosphites: towards a discrimination between molecular and colloidal catalysts. Adv Synth Catal 349:2459–2469

    Article  CAS  Google Scholar 

  166. Mukherjee S, List B (2007) Chiral counteranions in asymmetric transition-metal catalysis: highly enantioselective Pd/Bronsted acid-catalyzed direct α-allylation of aldehydes. J Am Chem Soc 129:11336–11337

    Article  CAS  Google Scholar 

  167. Mang JY et al (2008) Palladium-catalyzed asymmetric allylic alkylation in the presence of chiral cinchonidinium salts. J Korean Chem Soc 52:724–726

    Article  CAS  Google Scholar 

  168. Lei B-L et al (2009) Kinetic resolution of 2,3-dihydro-2-substituted 4-quinolones by palladium-catalyzed asymmetric allylic alkylation. J Am Chem Soc 131:18250–18251

    Article  CAS  Google Scholar 

  169. Mino T et al (2008) Kinetic resolution of allylic esters in palladium-catalyzed asymmetric allylic alkylations using C-N bond axially chiral aminophosphine ligands. Tetrahedron Asymmetry 19:2711–2716

    Article  CAS  Google Scholar 

  170. Jiang X-B et al (2007) SUPRAphos-based palladium catalysts for the kinetic resolution of racemic cyclohexenyl acetate. Chem Commun 22:2287–2289

    Article  CAS  Google Scholar 

  171. Trost BM, Fandrick DR (2007) Palladium-catalyzed dynamic kinetic asymmetric allylic alkylation with the DPPBA ligands. Aldrichimica Acta 40:59–72

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Guiry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Milhau, L., Guiry, P.J. (2011). Palladium-Catalyzed Enantioselective Allylic Substitution. In: Kazmaier, U. (eds) Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis. Topics in Organometallic Chemistry, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2011_9

Download citation

Publish with us

Policies and ethics