Skip to main content

Molybdenum-Catalyzed and Tungsten-Catalyzed Enantioselective Allylic Substitutions

  • Chapter
  • First Online:
Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 38))

Abstract

Asymmetric allylic substitutions catalyzed by molybdenum and tungsten complexes provide branched chiral products from unsymmetrically substituted allylic reagents. Highly selective chiral ligands are available for both types of reactions, but for the tungsten-catalyzed substitutions, enantioselective reactions are only possible starting from achiral linear allylic substrates. A variety of stabilized carbanions can be used as nucleophiles. The molybdenum-catalyzed reaction has been applied to the synthesis of several biologically active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

b:

Branched

Bipy:

Bipyridine

Boc:

tert-Butoxycarbonyl

l:

Linear

References

  1. Trost BM, Lautens M (1982) Molybdenum catalysts for allylic alkylation. J Am Chem Soc 104:5543

    Article  CAS  Google Scholar 

  2. Trost BM, Hung M-H (1983) Tungsten-catalyzed allylic alkylations. New avenues for selectivity. J Am Chem Soc 105:7757

    Article  CAS  Google Scholar 

  3. Belda O, Moberg C (2004) Molybdenum-catalyzed asymmetric allylic alkylations. Acc Chem Res 37:159

    Article  CAS  Google Scholar 

  4. Pfaltz A, Lautens M (1999) In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis. Springer, Berlin, p 833

    Google Scholar 

  5. Trost BM, Crawley ML (2003) Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem Rev 103:2921

    Article  CAS  Google Scholar 

  6. Lu Z, Ma S (2008) Metal-catalyzed enantioselective allylation in asymmetric synthesis. Angew Chem Int Ed 47:258

    Article  CAS  Google Scholar 

  7. Trost BM, Tometzki GB, Hung M-H (1987) Unusual chemoselectivity using difunctional allylic alkylating agents. J Am Chem Soc 109:2176

    Article  CAS  Google Scholar 

  8. Kubas GJ, Van Der Sluys LS (1990) Tricarbonyltris(nitrile) complexes of Cr, Mo, and W. Inorg Synth 28:29

    Article  CAS  Google Scholar 

  9. Cotton FA, McCleverty JA, White JE (1990) Tricarbonyl(cycloheptatriene)molybdenum(0). Inorg Synth 28:45

    Article  CAS  Google Scholar 

  10. Kubas GJ (1983) Preparation and use of W(CO)3(NCR)3 (R = Et, Pr) as improved starting materials for synthesis of tricarbonyl(η6-cycloheptatriene)tungsten and other substituted carbonyl complexes. Inorg Chem 22:692

    Article  CAS  Google Scholar 

  11. Kaiser N-FK, Bremberg U, Larhed M, Moberg C, Hallberg A (2000) Fast, convenient, and efficient molybdenum-catalyzed asymmetric allylic alkylation under noninert conditions: an example of microwave promoted fast chemistry. Angew Chem Int Ed 39:3596

    Google Scholar 

  12. Trost BM, Lautens M, Hung M-H, Carmichael CS (1984) Tandem alkylation-cycloadditions. Control by transition-metal templates. J Am Chem Soc 106:7641

    Article  CAS  Google Scholar 

  13. Palucki M, Um JM, Conlon DA, Yasuda N, Hughes DL, Mao B, Wang J, Reider PJ (2001) Molybdenum-catalyzed asymmetric allylic alkylation reactions using Mo(CO)6 as precatalyst. Adv Synth Catal 343:46

    Article  CAS  Google Scholar 

  14. Lehmann J, Lloyd-Jones GC (1995) Regiocontrol and stereoselectivity in tungsten-bipyridine catalysed allylic alkylation. Tetrahedron 51:8863

    Article  CAS  Google Scholar 

  15. Trost BM, Hung M-H (1984) On the regiochemistry of metal-catalyzed allylic alkylation: a model. J Am Chem Soc 106:6837

    Article  CAS  Google Scholar 

  16. Frisell H, Åkermark B (1995) Influence of different 4,7-substituted 1,10-phenanthroline ligands on reactivity and regio- and stereocontrol in tungsten-catalyzed allylic alkylations. Organometallics 14:561

    Article  CAS  Google Scholar 

  17. Trost BM, Zhang Y (2007) Mo-catalyzed regio-, diastereo-, and enantioselective allylic alkylation of 3-aryloxindoles. J Am Chem Soc 129:14548

    Article  CAS  Google Scholar 

  18. Trost BM, Zhang Y (2010) Catalytic double stereoinduction in asymmetric allylic alkylation of oxindoles. Chem Eur J 16:296

    Article  CAS  Google Scholar 

  19. Trost BM, Lautens M (1987) Chemoselectivity and stereocontrol in molybdenum-catalyzed allylic alkylations. J Am Chem Soc 109:1469

    Article  CAS  Google Scholar 

  20. Trost BM, Lautens M (1983) Regiochemical control in the molybdenum-catalyzed reactions of trimethylsilyl- and ester-substituted allylic acetates. Organometallics 2:1687

    Article  CAS  Google Scholar 

  21. Faller JW, Linebarrier D (1988) Reversal of stereochemical path in allylic alkylations promoted by palladium and molybdenum complexes. Organometallics 7:1670

    Article  CAS  Google Scholar 

  22. Lloyd-Jones GC, Krska SW, Hughes DL, Gouriou L, Bonnet VD, Jack K, Sun Y, Reamer RA (2004) Conclusive evidence for a retention-retention pathway for the molybdenum-catalyzed asymmetric alkylation. J Am Chem Soc 126:702

    Article  CAS  Google Scholar 

  23. Lloyd-Jones GC, Muños MP (2007) Isotopic labelling in the study of organic and organometallic mechanism and structure: an account. J Label Cmpd Radiopharm 50:1072

    Article  CAS  Google Scholar 

  24. Malkov AV, Gouriou L, Lloyd-Jones GC, Starý I, Langer V, Spoor P, Vinader V, Kočovský P (2006) Asymmetric allylic substitution catalyzed by C 1-symmetrical complexes of molybdenum: structural requirements of the ligand and the stereochemical course of the reaction. Chem Eur J 12:6910

    Article  CAS  Google Scholar 

  25. Trost BM (2002) Pd asymmetric allylic alkylation (AAA). A powerful synthetic tool. Chem Pharm Bull 50:1

    Article  CAS  Google Scholar 

  26. Hughes DL, Palucki M, Yasuda N, Reamer RA, Reider PJ (2002) Solvent-dependent dynamic kinetic asymmetric transformation/kinetic resolution in molybdenum-catalyzed asymmetric allylic alkylations. J Org Chem 67:2762

    Article  CAS  Google Scholar 

  27. Lloyd-Jones GC, Pfaltz A (1995) Chiral phosphanodihydrooxazoles in asymmetric catalysis: tungsten-catalyzed allylic substitution. Angew Chem Int Ed Engl 34:462

    Article  CAS  Google Scholar 

  28. Helmchen G, Pfaltz A (2000) Phosphinooxazolines-a new class of versatile, modular P, N-ligands for asymmetric catalysis. Acc Chem Res 33:336

    Article  CAS  Google Scholar 

  29. Lloyd-Jones GC, Pfaltz A (1995) Synthesis and structure of low-valent tungsten complexes bearing chiral oxazoline-derived ligands. Z Naturforsch 50b:361

    Google Scholar 

  30. Prétôt R, Lloyd-Jones GC, Pfaltz A (1998) Enantio- and regiocontrol in palladium- and tungsten-catalyzed allylic substitutions. Pure Appl Chem 70:1035

    Article  Google Scholar 

  31. Barnes DJ, Chapman RL, Vagg RS, Watton EC (1978) Synthesis of novel bis(amides) by means of triphenyl phosphite intermediates. J Chem Eng Data 23:349

    Article  CAS  Google Scholar 

  32. Trost BM, Hachiya I (1998) Asymmetric molybdenum-catalyzed alkylations. J Am Chem Soc 120:1104

    Article  CAS  Google Scholar 

  33. Conlon DA, Yasuda N (2001) Practical synthesis of chiral N,Nc-Bis(2°-pyridinecarboxamide)-1,2-cyclohexane ligands. Adv Synth Catal 343:137

    Article  CAS  Google Scholar 

  34. Trost BM, Hildbrand S, Dogra K (1999) Regio- and enantioselective molybdenum-catalyzed alkylations of polyenyl esters. J Am Chem Soc 121:10416

    Article  CAS  Google Scholar 

  35. Belda O, Kaiser N-F, Bremberg U, Larhed M, Hallberg A, Moberg C (2000) Highly stereo- and regioselective allylations catalyzed by Mo-pyridylamide complexes. Electronic and steric effects of the ligand. J Org Chem 65:5868

    Article  CAS  Google Scholar 

  36. Belda O, Moberg C (2002) Substituted pyridylamide ligands in microwave-accelerated Mo(0)-catalysed allylic alkylations. Synthesis 1601

    Google Scholar 

  37. Belda O, Lundgren S, Moberg C (2003) Recoverable resin-supported pyridylamide ligand for microwave-accelerated molybdenum-catalyzed asymmetric allylic alkylations: enantioselective synthesis of baclofen. Org Lett 5:2275

    Article  CAS  Google Scholar 

  38. Ong J, Kerr DIB (2005) Clinical potential of GABAB receptor modulators. CNS Drug Rev 11:317

    Article  CAS  Google Scholar 

  39. Malkov AV, Spoor P, Vinader V, Kočovský P (2001) Asymmetric molybdenum(0)-catalyzed allylic substitution. Tetrahedron Lett 42:509

    Article  CAS  Google Scholar 

  40. Del Litto R, Benessere V, Ruffo F, Moberg C (2009) Carbohydrate-based pyridine-2-carboxamides for Mo-catalyzed asymmetric allylic alkylations. Eur J Org Chem 1352

    Google Scholar 

  41. Trost BM, Dogra K, Hachiya I, Emura T, Hughes DL, Krska S, Reamer RA, Palucki M, Yasuda N, Reider PJ (2002) Designed ligands as probes for the catalytic binding mode in Mo-catalyzed asymmetric allylic alkylation. Angew Chem Int Ed 41:1929

    Article  CAS  Google Scholar 

  42. Glorius F, Pfaltz A (1999) Enantioselective molybdenum-catalyzed allylic alkylation using chiral bisoxazoline ligands. Org Lett 1:141

    Article  CAS  Google Scholar 

  43. Glorius F, Neuburger M, Pfaltz A (2001) Highly enantio- and regioselective allylic alkylations catalyzed by chiral [bis(dihydrooxazole)]molybdenum complexes. Helv Chim Acta 84:3178

    Article  CAS  Google Scholar 

  44. Trost BM, Dogra K (2002) Synthesis of novel quaternary amino acids using molybdenum-catalyzed asymmetric allylic alkylation. J Am Chem Soc 124:7256

    Article  CAS  Google Scholar 

  45. Trost BM, Ariza X (1997) Catalytic asymmetric alkylation of nucleophiles: asymmetric synthesis of α-alkylated amino acids. Angew Chem Int Ed Engl 36:2635

    Article  CAS  Google Scholar 

  46. Trost BM, Dogra K, Franzini M (2004) 5H-Oxazol-4-ones as building blocks for asymmetric synthesis of -hydroxycarboxylic acid derivatives. J Am Chem Soc 126:1944

    Article  CAS  Google Scholar 

  47. Trost BM, Zhang Y (2006) Molybdenum-catalyzed asymmetric allylation of 3-alkyloxindoles: application to the formal total synthesis of (−)-physostigmine. J Am Chem Soc 128:4590

    Article  CAS  Google Scholar 

  48. Hughes DL, Lloyd-Jones GC, Krska SW, Gouriou L, Bonnet VD, Jack K, Sun Y, Mathre DJ, Reamer RA (2004) Mechanistic studies of the molybdenum-catalyzed asymmetric alkylation reaction. Proc Natl Acad Sci USA 101:5379

    Article  CAS  Google Scholar 

  49. Krska SW, Hughes DL, Reamer RA, Mathre DJ, Palucki M, Yasuda N, Sun Y, Trost BM (2004) New insights into the mechanism of molybdenum-catalyzed asymmetric alkylation. Pure Appl Chem 76:625

    Article  CAS  Google Scholar 

  50. Luft JAR, Yu Z-X, Hughes DL, Lloyd-Jones GC, Krska SW, Houk KN (2006) On the stability of the π-allyl intermediate in molybdenum-catalyzed asymmetric alkylations. Tetrahedron: Asymmetry 17:716

    Article  CAS  Google Scholar 

  51. Krska SW, Hughes DL, Reamer RA, Mathre DJ, Sun Y, Trost BM (2002) The unusual role of CO transfer in molybdenum-catalyzed asymmetric alkylations. J Am Chem Soc 124:12656

    Article  CAS  Google Scholar 

  52. Kočovský P, Malkov AV, Vyskočil Š, Lloyd-Jones GC (1999) Transition metal catalysis in organic synthesis – reflections, chirality and new vistas. Pure Appl Chem 71:1425

    Article  Google Scholar 

  53. Palucki M, Um JM, Yasuda N, Conlon DA, Tsay F-R, Hartner FW, Hsiao Y, Marcune B, Karady S, Hughes DL, Dormer PG, Reider PJ (2002) Development of a new and practical route to chiral 3,4-disubstituted cyclopentanones: asymmetric alkylation and intramolecular cyclopropanation as key C–C bond-forming steps. J Org Chem 67:5508

    Article  CAS  Google Scholar 

  54. Faller JW, Sarantopoulos N (2004) Retention of configuration and regiochemistry in allylic alkylations via the memory effect. Organometallics 23:2179

    Article  CAS  Google Scholar 

  55. Conlon DA, Jensen MS, Palucki M, Yasuda N, Um JM, Yang C, Hartner FW, Tsay F-R, Hsiao Y, Pye P, Rivera NR, Hughes DL (2005) Stereoselective synthesis of an anti-HIV drug candidate. Chirality 17:149

    Article  Google Scholar 

  56. Trost BM, Andersen NG (2002) Utilization of molybdenum- and palladium-catalyzed dynamic kinetic asymmetric transformations for the preparation of tertiary and quaternary stereogenic centers: a concise synthesis of tipranavir. J Am Chem Soc 124:14320

    Article  CAS  Google Scholar 

  57. Trost BM, Dogra K (2007) Synthesis of (−)-Δ9-trans-tetrahydrocannabinol: stereocontrol via Mo-catalyzed asymmetric allylic alkylation reaction. Org Lett 9:861

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Moberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moberg, C. (2011). Molybdenum-Catalyzed and Tungsten-Catalyzed Enantioselective Allylic Substitutions. In: Kazmaier, U. (eds) Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis. Topics in Organometallic Chemistry, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2011_11

Download citation

Publish with us

Policies and ethics