Skip to main content

Toll-like receptor 9 and systemic autoimmune diseases

  • Chapter
Toll-like Receptors in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 650 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coley WB (1991) The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res: 3–11

    Google Scholar 

  2. Wiemann B, Starnes CO (1994) Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther 64: 529–564

    Article  PubMed  CAS  Google Scholar 

  3. Eidinger D, Morales A (1978) BCG immunotherapy of metastatic adenocarcinoma of the kidney. Natl Cancer Inst Monogr 49: 339–341

    PubMed  Google Scholar 

  4. Morales A (1978) Adjuvant immunotherapy in superficial bladder cancer. Natl Cancer Inst Monogr 49: 315–319

    PubMed  Google Scholar 

  5. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5: 987–995

    Article  PubMed  CAS  Google Scholar 

  6. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4: 499–511

    Article  PubMed  CAS  Google Scholar 

  7. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921

    Article  PubMed  CAS  Google Scholar 

  8. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562

    PubMed  CAS  Google Scholar 

  9. Vihinen M, Arredondo-Vega FX, Casanova JL, Etzioni A, Giliani S, Hammarstrom L, Hershfield MS, Heyworth PG, Hsu AP, Lahdesmaki A et al (2001) Primary immunodeficiency mutation databases. Adv Genet 43: 103–188

    PubMed  CAS  Google Scholar 

  10. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–745

    PubMed  CAS  Google Scholar 

  11. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973–983

    Article  PubMed  CAS  Google Scholar 

  12. Takeuchi O, Hoshino K, Akira S (2000) Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 165: 5392–5396

    PubMed  CAS  Google Scholar 

  13. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and grampositive bacterial cell wall components. Immunity 11: 443–451

    Article  PubMed  CAS  Google Scholar 

  14. O’Brien AD, Rosenstreich DL (1983) Genetic control of the susceptibility of C3HeB/FeJ mice to Salmonella typhimurium is regulated by a locus distinct from known salmonella response genes. J Immunol 131: 2613–2615

    PubMed  CAS  Google Scholar 

  15. O’Brien AD, Rosenstreich DL, Scher I, Campbell GH, MacDermott RP, Formal SB (1980) Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J Immunol 124: 20–24

    PubMed  CAS  Google Scholar 

  16. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54 (Pt 1): 1–13

    PubMed  CAS  Google Scholar 

  17. Janeway CA Jr (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13: 11–16

    Article  PubMed  CAS  Google Scholar 

  18. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045

    PubMed  CAS  Google Scholar 

  19. Matzinger P (1998) An innate sense of danger. Semin Immunol 10: 399–415

    Article  PubMed  CAS  Google Scholar 

  20. Matzinger P (2002) An innate sense of danger. Ann NY Acad Sci 961: 341–342

    PubMed  Google Scholar 

  21. Seong SY, Matzinger P (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4: 469–478

    Article  PubMed  CAS  Google Scholar 

  22. Palliser D, Huang Q, Hacohen N, Lamontagne SP, Guillen E, Young RA, Eisen HN (2004) A role for Toll-like receptor 4 in dendritic cell activation and cytolytic CD8+ T cell differentiation in response to a recombinant heat shock fusion protein. J Immunol 172: 2885–2893

    PubMed  CAS  Google Scholar 

  23. Beg AA (2002) Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol 23: 509–512

    Article  PubMed  CAS  Google Scholar 

  24. Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG (2002) Heat-shock proteins as activators of the innate immune system. Trends Immunol 23: 130–135

    Article  PubMed  CAS  Google Scholar 

  25. Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, Kirschning CJ, Da Costa C, Rammensee HG, Wagner H et al (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277: 20847–20853

    PubMed  CAS  Google Scholar 

  26. Vabulas RM, Wagner H, Schild H (2002) Heat shock proteins as ligands of toll-like receptors. Curr Top Microbiol Immunol 270: 169–184

    PubMed  CAS  Google Scholar 

  27. Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279: 7370–7377

    PubMed  CAS  Google Scholar 

  28. Smiley ST, King JA, Hancock WW (2001) Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167: 2887–2894

    PubMed  CAS  Google Scholar 

  29. Vazquez de Lara LG, Umstead TM, Davis SE, Phelps DS (2003) Surfactant protein A increases matrix metalloproteinase-9 production by THP-1 cells. Am J Physiol Lung Cell Mol Physiol 285: L899–906

    PubMed  CAS  Google Scholar 

  30. Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M (2002) Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 168: 5989–5992

    PubMed  CAS  Google Scholar 

  31. Johnson GB, Brunn GJ, Platt JL (2004) Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. J Immunol 172: 20–24

    PubMed  CAS  Google Scholar 

  32. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, Simon JC (2002) Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195: 99–111

    Article  PubMed  CAS  Google Scholar 

  33. Miller YI, Viriyakosol S, Binder CJ, Feramisco JR, Kirkland TN, Witztum JL (2003) Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J Biol Chem 278: 1561–1568

    PubMed  CAS  Google Scholar 

  34. Kariko K, Ni H, Capodici J, Lamphier M, Weissman D (2004) mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279: 12542–12550

    PubMed  CAS  Google Scholar 

  35. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416: 603–607

    Article  PubMed  CAS  Google Scholar 

  36. Viglianti GA, Lau CM, Hanley TM, Miko BA, Shlomchik MJ, Marshak-Rothstein A (2003) Activation of autoreactive B cells by CpG dsDNA. Immunity 19: 837–847

    Article  PubMed  CAS  Google Scholar 

  37. Boule MW, Broughton C, Mackay F, Akira S, Marshak-Rothstein A, Rifkin IR (2004) Toll-like receptor 9-dependent and-independent dendritic cell activation by chromatinimmunoglobulin G complexes. J Exp Med 199: 1631–1640

    Article  PubMed  CAS  Google Scholar 

  38. Means TK, Latz E, Hayashi F, Murali MR, Golenbock DT, Luster AD (2005) Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 115: 407–417

    Article  PubMed  CAS  Google Scholar 

  39. Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H, Takahashi T, Imaizumi H, Asai Y, Kuroki Y (2003) Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol 171: 417–425

    PubMed  CAS  Google Scholar 

  40. Murakami S, Iwaki D, Mitsuzawa H, Sano H, Takahashi H, Voelker DR, Akino T, Kuroki Y (2002) Surfactant protein A inhibits peptidoglycan-induced tumor necrosis factor-alpha secretion in U937 cells and alveolar macrophages by direct interaction with toll-like receptor 2. J Biol Chem 277: 6830–6837

    PubMed  CAS  Google Scholar 

  41. Tsan MF, Gao B (2004) Endogenous ligands of Toll-like receptors. J Leukoc Biol 76: 514–519

    Article  PubMed  CAS  Google Scholar 

  42. Bausinger H, Lipsker D, Ziylan U, Manie S, Briand JP, Cazenave JP, Muller S, Haeuw JF, Ravanat C, de la Salle H et al (2002) Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur J Immunol 32: 3708–3713

    Article  PubMed  CAS  Google Scholar 

  43. Gao B, Tsan MF (2003) Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J Biol Chem 278: 174–179

    PubMed  CAS  Google Scholar 

  44. Gao B, Tsan MF (2003) Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor alpha from murine macrophages. J Biol Chem 278: 22523–22529

    PubMed  CAS  Google Scholar 

  45. Reed RC, Berwin B, Baker JP, Nicchitta CV (2003) GRP94/gp96 elicits ERK activation in murine macrophages. A role for endotoxin contamination in NF-kappa B activation and nitric oxide production. J Biol Chem 278: 31853–31860

    Article  PubMed  CAS  Google Scholar 

  46. Yamamoto S, Yamamoto T, Shimada S, Kuramoto E, Yano O, Kataoka T, Tokunaga T (1992) DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microbiol Immunol 36: 983–997

    PubMed  CAS  Google Scholar 

  47. Yamamoto T, Yamamoto S, Kataoka T, Komuro K, Kohase M, Tokunaga T (1994) Synthetic oligonucleotides with certain palindromes stimulate interferon production of human peripheral blood lymphocytes in vitro. Jpn J Cancer Res 85: 775–779

    PubMed  CAS  Google Scholar 

  48. Tokunaga T, Yamamoto H, Shimada S, Abe H, Fukuda T, Fujisawa Y, Furutani Y, Yano O, Kataoka T, Sudo T (1984) Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J Natl Cancer Inst 72: 955–962

    PubMed  CAS  Google Scholar 

  49. Branda RF, Moore AL, Mathews L, McCormack JJ, Zon G (1993) Immune stimulation by an antisense oligomer complementary to the rev gene of HIV-1. Biochem Pharmacol 45: 2037–2043.

    Article  PubMed  CAS  Google Scholar 

  50. Hartmann G, Krug A, Waller-Fontaine K, Endres S (1996) Oligodeoxynucleotides enhance lipopolysaccharide-stimulated synthesis of tumor necrosis factor: dependence on phosphorothioate modification and reversal by heparin. Mol Med 2: 429–438

    PubMed  CAS  Google Scholar 

  51. Tanaka T, Chu CC, Paul WE (1992) An antisense oligonucleotide complementary to a sequence in I gamma 2b increases gamma 2b germline transcripts, stimulates B cell DNA synthesis, and inhibits immunoglobulin secretion. J Exp Med 175: 597–607.

    Article  PubMed  CAS  Google Scholar 

  52. Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20: 709–760

    Article  PubMed  CAS  Google Scholar 

  53. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546–549.

    Article  PubMed  CAS  Google Scholar 

  54. Han J, Zhu Z, Hsu C, Finley WH (1994) Selection of antisense oligonucleotides on the basis of genomic frequency of the target sequence. Antisense Res Dev 4: 53–65

    PubMed  CAS  Google Scholar 

  55. Aissani B, Bernardi G (1991) CpG islands: features and distribution in the genomes of vertebrates. Gene 106: 173–183

    PubMed  CAS  Google Scholar 

  56. Antequera F, Bird A (1993) CpG islands. Exs 64: 169–185

    PubMed  CAS  Google Scholar 

  57. Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N et al (2005) Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 201: 19–25

    Article  PubMed  CAS  Google Scholar 

  58. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168: 4531–4537

    PubMed  CAS  Google Scholar 

  59. Hayashi F, Means TK, Luster AD (2003) Toll-like receptors stimulate human neutrophil function. Blood 102: 2660–2669

    PubMed  CAS  Google Scholar 

  60. Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5: 1219–1226

    Article  PubMed  CAS  Google Scholar 

  61. Rothenfusser S, Tuma E, Endres S, Hartmann G (2002) Plasmacytoid dendritic cells: the key to CpG. Hum Immunol 63: 1111–1119.

    Article  PubMed  CAS  Google Scholar 

  62. Boonstra A, Asselin-Paturel C, Gilliet M, Crain C, Trinchieri G, Liu YJ, O’Garra A (2003) Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J Exp Med 197: 101–109.

    Article  PubMed  CAS  Google Scholar 

  63. Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, Wagner H, Lipford GB (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 98: 9237–9242

    PubMed  CAS  Google Scholar 

  64. Roberts TL, Sweet MJ, Hume DA, Stacey KJ (2005) Cutting edge: species-specific TLR9-mediated recognition of CpG and non-CpG phosphorothioate-modified oligonucleotides. J Immunol 174: 605–608

    PubMed  CAS  Google Scholar 

  65. Vollmer J (2005) Progress in drug development of immunostimulatory CpG oligodeoxynucleotide ligands for TLR9. Expert Opin Biol Ther 5: 673–682

    Article  PubMed  CAS  Google Scholar 

  66. Hartmann G, Battiany J, Poeck H, Wagner M, Kerkmann M, Lubenow N, Rothenfusser S, Endres S (2003) Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-alpha induction in plasmacytoid dendritic cells. Eur J Immunol 33: 1633–1641

    Article  PubMed  CAS  Google Scholar 

  67. Hartmann G, Krieg AM (2000) Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 164: 944–953.

    PubMed  CAS  Google Scholar 

  68. Krug A, Rothenfusser S, Hornung V, Jahrsdorfer B, Blackwell S, Ballas ZK, Endres S, Krieg AM, Hartmann G (2001) Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol 31: 2154–2163

    PubMed  CAS  Google Scholar 

  69. Marshall JD, Fearon K, Abbate C, Subramanian S, Yee P, Gregorio J, Coffman RL, Van Nest G (2003) Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J Leukoc Biol 73: 781–792

    Article  PubMed  CAS  Google Scholar 

  70. Verthelyi D, Ishii KJ, Gursel M, Takeshita F, Klinman DM (2001) Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J Immunol 166: 2372–2377.

    PubMed  CAS  Google Scholar 

  71. Kerkmann M, Costa LT, Richter C, Rothenfusser S, Battiany J, Hornung V, Johnson J, Englert S, Ketterer T, Heckl W et al (2005) Spontaneous formation of nucleic acid-based nanoparticles is responsible for high interferon-alpha induction by CpG-A in plasmacytoid dendritic cells. J Biol Chem 280: 8086–8093

    PubMed  CAS  Google Scholar 

  72. Marshall JD, Fearon KL, Higgins D, Hessel EM, Kanzler H, Abbate C, Yee P, Gregorio J, Cruz TD, Lizcano JO et al (2005) Superior activity of the type C class of ISS in vitro and in vivo across multiple species. DNA Cell Biol 24: 63–72

    Article  PubMed  CAS  Google Scholar 

  73. Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, Taya C, Taniguchi T (2005) Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434: 1035–1040

    PubMed  CAS  Google Scholar 

  74. Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5: 190–198

    Article  PubMed  CAS  Google Scholar 

  75. Latz E, Visintin A, Espevik T, Golenbock DT (2004) Mechanisms of TLR9 activation. J Endotoxin Res 10: 406–412

    Article  PubMed  CAS  Google Scholar 

  76. Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H (2002) Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol 32: 1958–1968

    Article  PubMed  CAS  Google Scholar 

  77. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3: 196–200

    Article  PubMed  CAS  Google Scholar 

  78. Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G, Bauer S (2002) Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3: 499

    Article  PubMed  CAS  Google Scholar 

  79. Heil F, Ahmad-Nejad P, Hemmi H, Hochrein H, Ampenberger F, Gellert T, Dietrich H, Lipford G, Takeda K, Akira S et al (2003) The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 33: 2987–2997

    Article  PubMed  CAS  Google Scholar 

  80. Lee J, Chuang TH, Redecke V, She L, Pitha PM, Carson DA, Raz E, Cottam HB (2003) Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc Natl Acad Sci USA 100: 6646–6651

    PubMed  CAS  Google Scholar 

  81. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A et al (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11: 263–270

    Article  PubMed  CAS  Google Scholar 

  82. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, Iwasaki A, Flavell RA (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 101: 5598–5603

    Article  PubMed  CAS  Google Scholar 

  83. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303: 1529–1531

    Article  PubMed  CAS  Google Scholar 

  84. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303: 1526–1529

    Article  PubMed  CAS  Google Scholar 

  85. Tsao BP (2003) The genetics of human systemic lupus erythematosus. Trends Immunol 24: 595–602

    Article  PubMed  CAS  Google Scholar 

  86. Tsao BP (2004) Update on human systemic lupus erythematosus genetics. Curr Opin Rheumatol 16: 513–521

    Article  PubMed  CAS  Google Scholar 

  87. Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, Nagata S (2004) Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304: 1147–1150

    Article  PubMed  CAS  Google Scholar 

  88. Shaw PX, Horkko S, Chang MK, Curtiss LK, Palinski W, Silverman GJ, Witztum JL (2000) Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 105: 1731–1740

    PubMed  CAS  Google Scholar 

  89. Kim SJ, Gershov D, Ma X, Brot N, Elkon KB (2002) I-PLA(2) activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J Exp Med 196: 655–665

    Article  PubMed  CAS  Google Scholar 

  90. Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, Loos M, Pandolfi PP, Walport MJ (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19: 56–59

    PubMed  CAS  Google Scholar 

  91. Lu Q, Lemke G (2001) Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293: 306–311

    Article  PubMed  CAS  Google Scholar 

  92. Kabarowski JH, Zhu K, Le LQ, Witte ON, Xu Y (2001) Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science 293: 702–705

    PubMed  CAS  Google Scholar 

  93. Bickerstaff MC, Botto M, Hutchinson WL, Herbert J, Tennent GA, Bybee A, Mitchell DA, Cook HT, Butler PJ, Walport MJ et al (1999) Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 5: 694–697

    PubMed  CAS  Google Scholar 

  94. Napirei M, Karsunky H, Zevnik B, Stephan H, Mannherz HG, Moroy T (2000) Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat Genet 25: 177–181

    PubMed  CAS  Google Scholar 

  95. Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH, Heyse SP, Hirsch R, Hochberg MC, Hunder GG et al (1998) Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum 41: 778–799

    Article  PubMed  CAS  Google Scholar 

  96. Mok CC, Lau CS (2003) Pathogenesis of systemic lupus erythematosus. J Clin Pathol 56: 481–490

    Article  PubMed  CAS  Google Scholar 

  97. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25: 1271–1277

    PubMed  CAS  Google Scholar 

  98. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40: 1725

    PubMed  CAS  Google Scholar 

  99. Arbuckle MR, James JA, Kohlhase KF, Rubertone MV, Dennis GJ, Harley JB (2001) Development of anti-dsDNA autoantibodies prior to clinical diagnosis of systemic lupus erythematosus. Scand J Immunol 54: 211–219

    Article  PubMed  CAS  Google Scholar 

  100. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, Harley JB (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349: 1526–1533

    Article  PubMed  CAS  Google Scholar 

  101. ter Borg EJ, Horst G, Hummel EJ, Limburg PC, Kallenberg CG (1990) Measurement of increases in anti-double-stranded DNA antibody levels as a predictor of disease exacerbation in systemic lupus erythematosus. A long-term, prospective study. Arthritis Rheum 33: 634–643

    PubMed  Google Scholar 

  102. Batteux F, Palmer P, Daeron M, Weill B, Lebon P (1999) FCgammaRII (CD32)-dependent induction of interferon-alpha by serum from patients with lupus erythematosus. Eur Cytokine Netw 10: 509–514

    PubMed  CAS  Google Scholar 

  103. Ravetch JV, Clynes RA (1998) Divergent roles for Fc receptors and complement in vivo. Annu Rev Immunol 16: 421–432

    Article  PubMed  CAS  Google Scholar 

  104. Vallin H, Perers A, Alm GV, Ronnblom L (1999) Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFNalpha inducer in systemic lupus erythematosus. J Immunol 163: 6306–6313

    PubMed  CAS  Google Scholar 

  105. Bengtsson AA, Sturfelt G, Truedsson L, Blomberg J, Alm G, Vallin H, Ronnblom L (2000) Activation of type I interferon system in systemic lupus erythematosus correlates with disease activity but not with antiretroviral antibodies. Lupus 9: 664–671

    Article  PubMed  CAS  Google Scholar 

  106. Ronnblom L, Alm GV (2003) Systemic lupus erythematosus and the type I interferon system. Arthritis Res Ther 5: 68–75

    PubMed  Google Scholar 

  107. Bave U, Alm GV, Ronnblom L (2000) The combination of apoptotic U937 cells and lupus IgG is a potent IFN-alpha inducer. J Immunol 165: 3519–3526

    PubMed  CAS  Google Scholar 

  108. Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL (1979) Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 301: 5–8

    PubMed  CAS  Google Scholar 

  109. Crow MK, Kirou KA, Wohlgemuth J (2003) Microarray analysis of interferon-regulated genes in SLE. Autoimmunity 36: 481–490

    PubMed  CAS  Google Scholar 

  110. Santiago-Raber ML, Baccala R, Haraldsson KM, Choubey D, Stewart TA, Kono DH, Theofilopoulos AN (2003) Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J Exp Med 197: 777–788

    Article  PubMed  CAS  Google Scholar 

  111. Sano H, Takai O, Harata N, Yoshinaga K, Kodama-Kamada I, Sasaki T (1989) Binding properties of human anti-DNA antibodies to cloned human DNA fragments. Scand J Immunol 30: 51–63

    PubMed  CAS  Google Scholar 

  112. Fitzpatrick DR, Wilson CB (2003) Methylation and demethylation in the regulation of genes, cells, and responses in the immune system. Clin Immunol 109: 37–45

    Article  PubMed  CAS  Google Scholar 

  113. Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293: 1068–1070

    Article  PubMed  CAS  Google Scholar 

  114. Bird AP, Taggart MH, Nicholls RD, Higgs DR (1987) Non-methylated CpG-rich islands at the human alpha-globin locus: implications for evolution of the alpha-globin pseudogene. Embo J 6: 999–1004

    PubMed  CAS  Google Scholar 

  115. Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16: 168–174

    Article  PubMed  CAS  Google Scholar 

  116. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247–257

    Article  PubMed  CAS  Google Scholar 

  117. Okano M, Takebayashi S, Okumura K, Li E (1999) Assignment of cytosine-5 DNA methyltransferases Dnmt3a and Dnmt3b to mouse chromosome bands 12A2–A3 and 2H1 by in situ hybridization. Cytogenet Cell Genet 86: 333–334

    Article  PubMed  CAS  Google Scholar 

  118. Pfeifer GP, Tanguay RL, Steigerwald SD, Riggs AD (1990) In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Dev 4: 1277–1287

    PubMed  CAS  Google Scholar 

  119. Sato Y, Miyata M, Sato Y, Nishimaki T, Kochi H, Kasukawa R (1999) CpG motif-containing DNA fragments from sera of patients with systemic lupus erythematosus proliferate mononuclear cells in vitro. J Rheumatol 26: 294–301

    PubMed  CAS  Google Scholar 

  120. Deng C, Lu Q, Zhang Z, Rao T, Attwood J, Yung R, Richardson B (2003) Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum 48: 746–756

    Article  PubMed  CAS  Google Scholar 

  121. Scheinbart LS, Johnson MA, Gross LA, Edelstein SR, Richardson BC (1991) Procainamide inhibits DNA methyltransferase in a human T cell line. J Rheumatol 18: 530–534

    PubMed  CAS  Google Scholar 

  122. Leifer CA, Kennedy MN, Mazzoni A, Lee C, Kruhlak MJ, Segal DM (2004) TLR9 is localized in the endoplasmic reticulum prior to stimulation. J Immunol 173: 1179–1183

    PubMed  CAS  Google Scholar 

  123. Hacker H, Mischak H, Miethke T, Liptay S, Schmid R, Sparwasser T, Heeg K, Lipford GB, Wagner H (1998) CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. Embo J 17: 6230–6240

    PubMed  CAS  Google Scholar 

  124. Klinman DM, Zeuner R, Yamada H, Gursel M, Currie D, Gursel I (2003) Regulation of CpG-induced immune activation by suppressive oligodeoxynucleotides. Ann NY Acad Sci 1002: 112–123

    PubMed  CAS  Google Scholar 

  125. Lenert P (2005) Inhibitory oligodeoxynucleotides — therapeutic promise for systemic autoimmune diseases? Clin Exp Immunol 140: 1–10

    Article  PubMed  CAS  Google Scholar 

  126. Yasuda K, Yu P, Kirschning CJ, Schlatter B, Schmitz F, Heit A, Bauer S, Hochrein H, Wagner H (2005) Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and-independent pathways. J Immunol 174: 6129–6136

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Rothenfusser, S., Latz, E. (2006). Toll-like receptor 9 and systemic autoimmune diseases. In: O’Neill, L.A., Brint, E. (eds) Toll-like Receptors in Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7441-1_3

Download citation

Publish with us

Policies and ethics