Skip to main content

Dawn of a new era in molecular cancer therapeutics

  • Chapter
Advances in Targeted Cancer Therapy

Part of the book series: Progress in Drug Research ((PDR,volume 63))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Desany B, Zemin Z (2004) Bioinformatics and cancer target discovery. Drug Discovery Today 9: 795–802

    Article  CAS  PubMed  Google Scholar 

  2. Workman P (2001) New drug targets for genomic cancer therapy: successes, limitations, opportunities and future challenges. Curr Cancer Drug Targets 1: 33–47

    Article  CAS  PubMed  Google Scholar 

  3. Guillemard V, Sargovi HU (2004) Novel approaches for targeted cancer therapy. Curr Cancer Drug Targets 4: 313–326

    Article  CAS  PubMed  Google Scholar 

  4. Segota E, Bukowski RM (2004) The promise of targeted therapy: Cancer drugs become more specific. Cleveland Clinic J Med 71: 551–560

    Google Scholar 

  5. Sawyers C (2004) Targeted cancer therapy. Nature 432: 294–297

    Article  CAS  PubMed  Google Scholar 

  6. Pegram M, Pietras R, Bajamonde A, Klein P, Fyfe G (2005) Targeted therapy: Wave of the future. J Clin Oncol 23: 1776–1781

    Article  CAS  PubMed  Google Scholar 

  7. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ et al (2004) EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 304: 1497–1500

    Article  CAS  PubMed  Google Scholar 

  8. Lynch TJ, Bell DW, Sordella R (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New Engl J Med 350: 1–11

    Article  Google Scholar 

  9. Golsteyn RM (2004) The story of gefitinib, an EGFR kinase that works in lung cancer. Drug Discovery Today 9: 587

    Article  PubMed  Google Scholar 

  10. Tibes R, Trent J, Kurzrock R (2005) Tyrosine kinase inhibitors and the dawn of molecular cancer therapeutics. Annu Rev Pharmacol Toxicol 45: 357–384

    Article  CAS  PubMed  Google Scholar 

  11. Ross JS, Schenkein DP, Pietrusko R, Rolfe M, Linette GP, Stec J, Stagliano NE, Ginsburg GS, Symmans WF, Pusztai L, Hortobagyi GN (2004) Targeted therapies for cancer 2004. Am J Clin Pathol 122: 598–609

    Article  CAS  PubMed  Google Scholar 

  12. Abou-Jawde R, Choueiri T, Alemany C, Mekhail T (2003) An overview of targeted treatments in cancer. Cancer Therapeutics 25: 2121–2129

    CAS  Google Scholar 

  13. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M et al (2001) First-line Herceptin monotherapy in metastatic breast cancer. Oncology 61suppl 2: 37–42

    CAS  PubMed  Google Scholar 

  14. Pegram MD, Konecny G, Slamon DJ (2000) The molecular and cell biology of HER2/neu gene amplification/overexpression and the clinical development of herceptin (trastuzumab) therapy for breast cancer. Cancer Treatment and Res 103: 57–75

    CAS  Google Scholar 

  15. Gianni L (2002) The future of targeted therapy: combining novel agents. Oncology 63suppl 1: 47–56

    CAS  PubMed  Google Scholar 

  16. Joensuu H, Dimitrijevic S (2001) Tyrosine kinase inhibitor imatinib (ST1571) as an anticancer agent for solid tumors. Ann Med 33: 451–455

    CAS  PubMed  Google Scholar 

  17. Manley PW, Cowan-Jacob SW, Buchdunger E, Fabbro D, Fendrich G, Furet P, Meyer T, Zimmermann J (2002) Imatinib: a selective tyrosine kinase inhibitor. Europ J Cancer 38suppl 5: S19–27

    Google Scholar 

  18. Cunningham D, Humblet Y, Siena S (2003) Cetuximab (C225) alone or in combination with irinotecan (CPT-11) in patients with epidermal growth factor receptor (EGFR)-positive, irinotecan-refractory metastatic colorectal cancer (MCRC). Proc Am Soc Clin Oncol 22: abstr 1012

    Google Scholar 

  19. O’dwyer PJ, Benson AB III (2002) Epidermal growth factor receptor-targeted therapy in colorectal cancer. Semin Oncol 29suppl 14: 10–17

    Google Scholar 

  20. Waksal HW (1999) Role of an anti-epidermal growth factor receptor in treating cancer. Cancer Metastasis Rev 18: 427–436

    Article  CAS  PubMed  Google Scholar 

  21. Berlin JD (2002) Targeting vascular endothelial growth factor in colorectal cancer. Oncology (Huntingt)16(8 suppl 7): 13–15

    CAS  Google Scholar 

  22. McCarthy M (2003) Antiangiogenesis drug promising for metastatic colorectal cancer. Lancet 361: 1959

    PubMed  Google Scholar 

  23. Salgaller ML (2003) Technology evaluation: bevacizumab, Genentech/Roche. Curr Opin Mol Ther 5: 657–667

    CAS  PubMed  Google Scholar 

  24. Richardson PG, Barlogie B, Berenson J (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348: 2609–2617

    Article  CAS  PubMed  Google Scholar 

  25. Voorhees PM, Dees EC, O’Neil B, Orlowski RZ (2003) The proteasome as a target for cancer therapy. Clin Cancer Res 9: 6316–6325

    CAS  PubMed  Google Scholar 

  26. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F et al (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16: 2825–2833

    CAS  PubMed  Google Scholar 

  27. Igarashi T, Itoh K, Kobayashi Y (2002) Phase II and pharmacokinetic study of rituximab with eight weekly infusions in relapsed aggressive B-cell non-Hodgkin’s lymphoma (B-NHL). Proc Am Soc Clin Oncol 21: 286a

    Google Scholar 

  28. Sievers EL (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD-33 positive acute myeloid leukemia in first relapse. Expert Opin Biol Ther 1: 893–901

    Article  CAS  PubMed  Google Scholar 

  29. Keating MJ, Flinn I, Jain V (2000) Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 99: 3554–3561

    Google Scholar 

  30. Mao JH, Wheldon TE (1995) A stochastic model for multistage tumorigenesis in developing and adult mice. Math Biosci 129: 95–110

    CAS  PubMed  Google Scholar 

  31. Kohn EC, Lu Y, Wang H, Yu Q, Yu S, Hall H, Smith DL, Meric-Bernstam F, Hortobagyi GN, Mills GB (2004) Molecular therapeutics: promise and challenges. Semin Oncol 31suppl 3: 39–53

    CAS  PubMed  Google Scholar 

  32. Petricoin EF, Zoon KC, Kohn EC, Berrett JC, Liotta, LA (2002) Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov 9: 683–695

    Google Scholar 

  33. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 6835: 375–379

    Google Scholar 

  34. Reed JC (1999) Dysregulation of apoptosis in cancer. J Clin Oncol 9: 2941–2953

    Google Scholar 

  35. Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100: 57–70

    Article  CAS  PubMed  Google Scholar 

  36. Hughes L (2004) Humanizing drug discovery. Drug Discov Development 7: 30–34

    Google Scholar 

  37. Espina V, Geho D, Mehta AI, Petricoin EF III, Liotta L, Rosenblatt KP (2005) Pathology of the future: molecular profiling for targeted therapy. Cancer Investigation 1: 36–46

    Google Scholar 

  38. Bichsel VE, Liotta LA, Petricoin EF III (2001) Cancer proteomics: from biomarker discovery to signal pathway profiling. Cancer J 7: 69–78

    CAS  PubMed  Google Scholar 

  39. Van’t Veer LJ, Dai H, van deVijer MJ, He YD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536

    Google Scholar 

  40. Yeoh EJ, Ross ME, Shertleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A et al (2002) Classification, subtype discovery and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143

    Article  CAS  PubMed  Google Scholar 

  41. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 5518: 929–934

    Google Scholar 

  42. Miller LD, Long PM, Wong L, Mukherjee S, McShane LM, Liu ET (2002) Optimal gene expression analysis by microarrays. Cancer Cell 5: 353–361

    Google Scholar 

  43. Clarke PA, te Poele R, Wooster R, Workman P (2001) Gene expression microarray analysis in cancer biology, pharmacology, and drug development: Progress and potential. Biochem Pharmacol 62: 1311–1136

    Article  CAS  PubMed  Google Scholar 

  44. Ramaswamy S, Tamayo P, Rifkin R (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98: 15149–15143

    Article  CAS  PubMed  Google Scholar 

  45. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS et al (2001) Gene expression patters of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–10874

    Article  CAS  PubMed  Google Scholar 

  46. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG et al (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8: 816–824

    CAS  PubMed  Google Scholar 

  47. Liotta L, Petricoin E (2000) Proteomic profiling of human cancer. Nature Rev Genet 1: 48–56

    CAS  Google Scholar 

  48. Liotta LA, Espina V, Mehta AI (2003) Protein microarrays: Meeting analytical challenges for clinical applications. Cancer Cell 3: 317–325

    Article  CAS  PubMed  Google Scholar 

  49. Liotta LA, Kohn EC, Petricoin EF (2001) Clinical proteomics: Personalized molecular medicine. JAMA 286: 2211–2214

    Article  CAS  PubMed  Google Scholar 

  50. Wei SH, Chen CM, Strathdee G, Harnsomburana J, Shyu CR, Rahmatpanah F, Shi H, Ng SW, Yan PS, Nephew KP et al (2002) Methylation microarry analysis of late-stage ovarian carcinoma distinguish progression-free survival in patients and identifies candidate epigenetic markers. Clin Cancer Res 8: 2246–2252

    CAS  PubMed  Google Scholar 

  51. Rush LJ, Plass C (2002) Restriction landmark genomic scanning for DNA methylation in cancer: Past, present, and future applications. Anal Biochem 307: 191–201

    Article  CAS  PubMed  Google Scholar 

  52. Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J, Hamilton G, Hindle AK, Huey B, Kimura K et al (2001) Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 29: 263–264

    Article  CAS  PubMed  Google Scholar 

  53. Kumar R and Hung M-C (2005) Signaling intricacies take center stage in cancer cells. Cancer Res 65: 2511–2515

    CAS  PubMed  Google Scholar 

  54. Ravandi F, Talpaz M, Estrov Z (2003) Modulation of cellular signaling pathways: prospects for targeted therapy in hematological malignancies. Clin Cancer Res 9: 535–550

    CAS  PubMed  Google Scholar 

  55. Shokat K, Velleca M (2002) Novel chemical genetic approaches to the discovery of signal transduction inhibitors. Drug Discovery Today 7: 872–879

    Article  CAS  PubMed  Google Scholar 

  56. Giuriato S, Rabin K, Fan AC, Shachaf CM, Felsher DW (2004) Conditional animal models: a strategy to define when ocogenes will be effective targets to treat cancer. Semin Cancer Biol 14: 3–11

    Article  CAS  PubMed  Google Scholar 

  57. Xie FY, Liu Y, Xu J, Tang QQ, Scaria PV, Zhou Q, Woodle MC, Lu PY (2004) Delivering siRNA to animal disease models for validation of novel drug targets in vivo. Pharma Genomics 4: 28–38

    CAS  Google Scholar 

  58. Higa GM (2004) Targeted therapies in oncology: in the crosshairs or at the crossroads? Expert Rev Anticancer Ther 4: 61–75

    CAS  PubMed  Google Scholar 

  59. Kelland LR (2004) “Of mice and men”: values and liabilities of the athymic nude mouse model in anticancer drug development. Europ J Cancer 40: 827–836

    Article  CAS  Google Scholar 

  60. Roberts RB, Arteaga CL, Threadgill DW (2004) Modeling the cancer patient with genetically engineered mice: prediction of toxicity from molecular-targeted therapies. Cancer Cell 5: 115–120

    Article  CAS  PubMed  Google Scholar 

  61. Hopkins A (2004) Are drugs discovered in the clinic or in the laboratory. Drug Discovery Today 3: 173–175

    Google Scholar 

  62. Koppal T (2004) Humanizing drug discovery. Drug Discovery and Development 7: 30–34

    Google Scholar 

  63. Sawyers CL (2003) Opportunities and challenges in the development of kinase inhibitor therapy for cancer. Genes Dev 17: 2998–3010

    Article  CAS  PubMed  Google Scholar 

  64. le Coutre P, Mologni L, Cleris L, Marchesi E, Buchdunger E, Giardini R, Formelli F, Gambacorti-Passerini C (1999) In vivo eradication of human Bcr/Abl-positive leukemia cells with an Abl kinase inhibitor. J Natl Cancer Inst 91: 163–168

    PubMed  Google Scholar 

  65. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ, Lydon NB (1996) Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 56: 100–104

    CAS  PubMed  Google Scholar 

  66. Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB, Gilliland DG, Druker BJ (1997) CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing Bcr-Abl, Tel-Abl, and Tel-PDGFR fusion proteins. Blood 90: 4947–4952

    CAS  PubMed  Google Scholar 

  67. Khalil MY, Grandis JR, Shin DM (2003) Targeting epidermal growth factor receptor: novel therapeutics for the management of cancer. Expert Rev Anticancer Ther 3: 367–380

    Article  CAS  PubMed  Google Scholar 

  68. Hortobagyi GN (2004) Opportunities and challenges in the development of targeted therapies. Semin Oncol 31suppl 3: 21–27

    CAS  PubMed  Google Scholar 

  69. Ross DM, Hughes TP (2004) Cancer treatment with kinase inhibitors: what have we learnt from imatinib? Br J Cancer 90: 12–19

    CAS  PubMed  Google Scholar 

  70. Schiller JH (2004) Clinical trial design issues in the era of targeted therapies. Clin Cancer Res 10: 4281s–4282s

    PubMed  Google Scholar 

  71. Dancey JE (2003) Recent advances of molecular agents: opportunities for imaging. Cancer Biol Ther 2: 601–609

    CAS  PubMed  Google Scholar 

  72. Vidal L, Attard G, Kaye S, DeBono J (2004) Reversing resistance to targeted therapy. J Chemother 16suppl 4: 7–12

    CAS  PubMed  Google Scholar 

  73. Akiyama S (2004) The mechanisms of the resistance to molecular targeted agents. Nippon Rinsho 62: 1297–1304

    PubMed  Google Scholar 

  74. Kim R, Toge T (2004) Changes in therapy for solid tumors: potential for overcoming drug resistance in vivo for molecular targeted agents. Surg Today 34: 293–303

    PubMed  Google Scholar 

  75. Mahon F-X, Belloc F, Legarde V, Chollet C, Moreau-Gaudry F, Reiffers J, Goldman JM, Melo JV (2003) MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101: 2368–2373

    Article  CAS  PubMed  Google Scholar 

  76. Le Coutre, P, Tassi, E, Varella-Garcia M, Barni R, Mologna L, Cabrita G, Marchesi E, Supino R, Gamacorti-Passerini CB (2000) Inducion of resistance to the Abelson inhibitor ST1571 in human leukemia cells through gene amplification. Blood 95: 1758–1766.

    PubMed  Google Scholar 

  77. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by Bcr-Abl gene mutation or amplification. Science 293: 876–880

    Article  CAS  PubMed  Google Scholar 

  78. Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K, Herrmann R, Lynch KP, Hughes TP (2002) High frequency of point mutations clustered within the adenosine triphosphate-binding region of Bcr/Abl in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 99: 3472–3475

    Article  CAS  PubMed  Google Scholar 

  79. Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A, Szer J, Taylor K, Herrmann R, Seymour JF, Arthur C et al (2003) Detection of Bcr-Abl mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 102: 276–283

    Article  CAS  PubMed  Google Scholar 

  80. Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, Lahaye T, Hanfstein B, Schoch C, Cross NCP, Berger U et al (2002) Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16: 2190–2196

    CAS  PubMed  Google Scholar 

  81. Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, Lai J-L, Philippe N, Falcon T, Fenaux P, Preudhomme C (2002) Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can preexist to the onset of treatment. Blood 100: 1014–1018

    Article  CAS  PubMed  Google Scholar 

  82. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL (2004) Overriding imatinib resistance with a novel Abl kinase inhibitor. Science 305: 399–401

    Article  CAS  PubMed  Google Scholar 

  83. Tsurus T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N (2003) Molecular Targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci 94: 15–21

    Google Scholar 

  84. Tsuruo T (2003) Molecular cancer therapeutics: recent progress and targets in drug resistance. Internal Med 42: 237–243

    CAS  Google Scholar 

  85. Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205: 275–292

    Article  CAS  PubMed  Google Scholar 

  86. Yingling JM, Blanchard KL, Sawyers JS (2004) Development of TGF-beta signaling inhibitors for cancer therapy. Nat Rev Drug Discov 3: 1011–1022

    Article  CAS  PubMed  Google Scholar 

  87. Beeram M, Patnaik A (2002) Targeting intracellular signal transduction: a new paradigm for a brave new world of molecularly targeted therapeutics. Hematol Oncol Clin N Am 16: 1089–1100

    Article  Google Scholar 

  88. Nam NH, Parang K (2003) Current targets for anticancer drug discovery. Current Drug Targets 4: 159–179

    Article  CAS  PubMed  Google Scholar 

  89. Zelent A, Petrie K, Chen Z, Lotan R, Lubbert M, Tallman MS, Ohno R, Degos L, Waxman S (2005) Molecular target-based treatment of human cancer: summary of the 10th international conference on differentiation therapy. Cancer Res 65: 1117–1123

    Article  CAS  PubMed  Google Scholar 

  90. Awada A, Mano M, Hendlisz A, Piccart M (2004) New anticancer agents and therapeutic strategies in development for solid cancers: a clinical perspective. Expert Rev Anticancer Ther 4: 53–60

    Article  CAS  PubMed  Google Scholar 

  91. Syed S, Rowisky E (2003) The new generation of targeted therapies for breast cancer. Oncology (Huntington) 17: 1339–1351

    Google Scholar 

  92. Liu MC, Marshall JL, Pestell RG (2004) Novel strategies in cancer therapeutics: targeting enzymes involved in cell cycle regulation and cellular proliferation. Curr Cancer Drug Targets 4: 403–424

    Article  CAS  PubMed  Google Scholar 

  93. El-Aneed A (2004) Current strategies in cancer gene therapy. Eur J Pharmacol 498: 1–8

    CAS  PubMed  Google Scholar 

  94. Seynaeve C, Verweij J (2004) Targeted therapy: ready for prime time? Cancer Treat Res 120: 1–15

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag, Basel (Switzerland)

About this chapter

Cite this chapter

Schultz, R.M. (2005). Dawn of a new era in molecular cancer therapeutics. In: Herrling, P.L., Matter, A., Schultz, R.M. (eds) Advances in Targeted Cancer Therapy. Progress in Drug Research, vol 63. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7414-4_1

Download citation

Publish with us

Policies and ethics