Skip to main content

Geodesic Computations for Fast and Accurate Surface Remeshing and Parameterization

  • Chapter
Elliptic and Parabolic Problems

Abstract

In this paper, we propose fast and accurate algorithms to remesh and flatten a genus-0 triangulated manifold. These methods naturally fits into a framework for 3D geometry modeling and processing that uses only fast geodesic computations. These techniques are gathered and extended from classical areas such as image processing or statistical perceptual learning. Using the Fast Marching algorithm, we are able to recast these powerful tools in the language of mesh processing. Thanks to some classical geodesic-based building blocks, we are able to derive a flattening method that exhibit a conservation of local structures of the surface.

On large meshes (more than 500 000 vertices), our techniques speed up computation by over one order of magnitude in comparison to classical remeshing and parameterization methods. Our methods are easy to implement and do not need multilevel solvers to handle complex models that may contain poorly shaped triangles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alliez, P., D. Cohen-Steiner, O. Devillers, B. Levy, and M. Desbrun: 2003, ‘Anisotropic Polygonal Remeshing’. ACM Transactions on Graphics. Special issue for SIGGRAPH conference pp. 485–493.

    Google Scholar 

  2. Bengio, Y., J.-F. Paiement, and P. Vincent: 2003, ‘Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering’. Proc. NIPS 2003.

    Google Scholar 

  3. Chew, L. P.: 1993, ‘Guaranteed-Quality Mesh Generation for Curved Surfaces’. Proc. of the Ninth Symposium on Computational Geometry pp. 274–280.

    Google Scholar 

  4. Cohen, L.: 2001, ‘Multiple Contour Finding and Perceptual Grouping Using Minimal Paths’. Journal of Mathematical Imaging and Vision 14(3), 225–236.

    MathSciNet  MATH  Google Scholar 

  5. Cohen, L.D. and R. Kimmel: 1997, ‘Global Minimum for Active Contour Models: A Minimal Path Approach’. International Journal of Computer Vision 24(1), 57–78.

    Article  Google Scholar 

  6. Cohen-Steiner, D. and J.-M. Morvan: 2003, ‘Restricted Delaunay Triangulations and Normal Cycles’. Proc. 19th ACM Sympos. Comput. Geom. pp. 237–246.

    Google Scholar 

  7. Desbrun, M., M. Meyer, and P. Alliez: 2002, ‘Intrinsic Parameterizations of Surface Meshes’. Eurographics conference proceedings 21(2), 209–218.

    Google Scholar 

  8. Eck, M., T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle: 1995, ‘Multiresolution Analysis of Arbitrary Meshes’. Computer Graphics 29 (Annual Conference Series), 173–182.

    Google Scholar 

  9. Eldar, Y., M. Lindenbaum, M. Porat, and Y. Zeevi: 1997, ‘The Farthest Point Strategy for Progressive Image Sampling’. IEEE Trans. on Image Processing 6(9), 1305–1315.

    Article  Google Scholar 

  10. Floater, M. S., K. Hormann, and M. Reimers: 2002, ‘Parameterization of Manifold Triangulations’. Approximation Theory X: Abstract and Classical Analysis pp. 197–209.

    Google Scholar 

  11. Kimmel, R. and J. Sethian: 1998, ‘Computing Geodesic Paths on Manifolds’. Proc. Natl. Acad. Sci. 95(15), 8431–8435.

    Article  MathSciNet  Google Scholar 

  12. Kunert, G.: 2002, ‘Towards Anisotropic Mesh Construction and Error Estimation in the Finite Element Method’. Numerical Methods in PDE 18, 625–648.

    MathSciNet  MATH  Google Scholar 

  13. Leibon, G. and D. Letscher: 2000, ‘Delaunay triangulations and Voronoi diagrams for Riemannian manifolds’. ACM Symposium on Computational Geometry pp. 341–349.

    Google Scholar 

  14. Levy, B., S. Petitjean, N. Ray, and J. Maillot: 2002, ‘Least Squares Conformal Maps for Automatic Texture Atlas Generation’. In: ACM (ed.): Special Interest Group on Computer Graphics — SIGGRAPH’02, San-Antonio, Texas, USA.

    Google Scholar 

  15. Moenning, C. and N.A. Dodgson: 2003, ‘Fast Marching Farthest Point Sampling’. Proc. EUROGRAPHICS 2003.

    Google Scholar 

  16. Onishi, K. and J. Itoh: 2003, ‘Estimation of the necessary number of points in Riemannian Voronoi diagram’. Proc. CCCG.

    Google Scholar 

  17. Peyré, G. and L.D. Cohen: 2003, ‘Geodesic Remeshing Using Front Propagation’. Proc. IEEE Variational, Geometric and Level Set Methods 2003.

    Google Scholar 

  18. Peyré, G. and L.D. Cohen: 2004, ‘Surface Segmentation Using Geodesic Centroidal Tesselation’. Proc. 3D Data Processing Visualization Transmission 2004.

    Google Scholar 

  19. Roweis, S. and L. Saul: 2000, ‘Nonlinear Dimensionality Reduction by Locally Linear Embedding’. Science 290(5500), 2323–2326.

    Article  Google Scholar 

  20. Ruppert, J.: 1995, ‘A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation’. Journal of Algorithms 18(3), 548–585.

    Article  MathSciNet  MATH  Google Scholar 

  21. Sethian, J.: 1999, Level Sets Methods and Fast Marching Methods. Cambridge University Press, 2nd edition.

    Google Scholar 

  22. Sifri, O., A. Sheffer, and C. Gotsman: 2003, ‘Geodesic-based Surface Remeshing’. Proc. 12th International Meshing Roundtable pp. 189–199.

    Google Scholar 

  23. Surazhsky, V., P. Alliez, and C. Gotsman: 2003, ‘Isotropic Remeshing of Surfaces: a Local Parameterization Approach’. Proc. 12th International Meshing Roundtable.

    Google Scholar 

  24. Tenenbaum, J.B., V. de Silva, and J.C. Langford: 2000, ‘A Global Geometric Framework for Nonlinear Dimensionality Reduction’. Science 290(5500), 2319–2323.

    Article  Google Scholar 

  25. Terzopoulos, D. and M. Vasilescu: 1992, ‘Adaptive Meshes and Shells: Irregular Triangulation, Discontinuities, and Hierarchical Subdivision’. In: Proc. IEEE CVPR’ 92. Champaign, Illinois, pp. 829–832.

    Google Scholar 

  26. Tsitsiklis, J.: 1995, ‘Efficient Algorithms for Globally Optimal Trajectories’. IEEE Trans. on Automatic Control.

    Google Scholar 

  27. Ulichney, R.: 1993, ‘The Void-and-Cluster Method for Generating Dither Arrays’. Proc. IS&T Symposium on Electronic Imaging Science & Technology, San Jose, CA 1913(9), 332–343.

    Google Scholar 

  28. Zigelman, G., R. Kimmel, and N. Kiryati: 2002, ‘Texture Mapping Using Surface Flattening via Multi-dimensional Scaling’. IEEE Trans. on Visualization and Computer Graphics 8(1), 198–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Peyré, G., Cohen, L. (2005). Geodesic Computations for Fast and Accurate Surface Remeshing and Parameterization. In: Bandle, C., et al. Elliptic and Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 63. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7384-9_18

Download citation

Publish with us

Policies and ethics