Skip to main content

What is a Logic?

  • Conference paper
Logica Universalis

Abstract

This paper builds on the theory of institutions, a version of abstract model theory that emerged in computer science studies of software specification and semantics. To handle proof theory, our institutions use an extension of traditional categorical logic with sets of sentences as objects instead of single sentences, and with morphisms representing proofs as usual. A natural equivalence relation on institutions is defined such that its equivalence classes are logics. Several invariants are defined for this equivalence, including a Lindenbaum algebra construction, its generalization to a Lindenbaum category construction that includes proofs, and model cardinality spectra; these are used in some examples to show logics inequivalent. Generalizations of familiar results from first order to arbitrary logics are also discussed, including Craig interpolation and Beth definability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Adámek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories. Wiley, New York, 1990.

    MATH  Google Scholar 

  2. Jon Barwise. Axioms for abstract model theory. Annals of Mathematical Logic, 7:221–265, 1974.

    MATH  MathSciNet  Google Scholar 

  3. J.-Y. Béziau, R..P. de Freitas, and J.P. Viana. What is classical propositional logic? (a study in universal logic). Logica Studies, 7, 2001.

    Google Scholar 

  4. M. Bidoit and R. Hennicker. On the integration of observability and reachability concepts. In M. Nielsen and U. Engberg, editors, FoSSaCS 2002, volume 2303 of Lecture Notes in Computer Science, pages 21–36. Springer, 2002.

    Google Scholar 

  5. M. Bidoit and A. Tarlecki. Behavioural satisfaction and equivalence in concrete model categories. Lecture Notes in Computer Science, 1059:241–256, 1996.

    MathSciNet  Google Scholar 

  6. T. Borzyszkowski. Generalized interpolation in first-order logic. Technical report, 2003. Submitted to Fundamenta Informaticae.

    Google Scholar 

  7. T. Borzyszkowski. Moving specification structures between logical systems. In J. L. Fiadeiro, editor, 13th WADT'98, volume 1589 of Lecture Notes in Computer Science, pages 16–30. Springer, 1999.

    Google Scholar 

  8. T. Borzyszkowski. Generalized interpolation in casl. Information Processing Letters, 76:19–24, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Cirstea. Institutionalising many-sorted coalgebraic modal logic. In CMCS 2002, Electronic Notes in Theoretical Computer Science. Elsevier Science, 2002.

    Google Scholar 

  10. R. Diaconescu. Grothendieck institutions. Applied Categorical Structures, 10(4):383–402, 2002. Preliminary version appeared as IMAR Preprint 2-2000, ISSN 250-3638, February 2000.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Diaconescu. Institution-independent ultraproducts. Fundamenta Informaticar, 55:321–348, 2003.

    MATH  MathSciNet  Google Scholar 

  12. R. Diaconescu. Elementary diagrams in institutions. Journal of Logic and Computation, 14(5):651–674, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Diaconescu. Herbrand theorems in arbitrary institutions. Information Processing Letters, 90:29–37, 2004.

    Article  MathSciNet  Google Scholar 

  14. R. Diaconescu. An institution-independent proof of Craig Interpolation Theorem. Studia Logica, 77(1):59–79, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Dimitrakos and T. Maibaum. On a generalized modularization theorem. Information Processing Letters, 74:65–71, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. L. Fiadeiro and J. F. Costa. Mirror, mirror in my hand: A duality between specifications and models of process behaviour. Mathematical Structures in Computer Science, 6(4):353–373, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specification and programming. Journal of the Association for Computing Machinery, 39:95–146, 1992. Predecessor in: LNCS 164, 221–256, 1984.

    MathSciNet  MATH  Google Scholar 

  18. J. A. Goguen and R. Diaconescu. Towards an algebraic semantics for the object paradigm. In WADT, number 785 in Lecture Notes in Computer Science. Springer Verlag, Berlin, Germany, 1994.

    Google Scholar 

  19. J. A. Goguen and G. Rosu. Institution morphisms. Formal Aspects of Computing, 13:274–307, 2002.

    Article  MATH  Google Scholar 

  20. J. A. Goguen and W. Tracz. An Implementation-Oriented Semantics for Module Composition. In Gary Leavens and Murali Sitaraman, editors, Foundations of Component-based Systems, pages 231–263. Cambridge, 2000.

    Google Scholar 

  21. D. GĂinĂ and A. Popescu. An institution-independent proof of Robinson consistency theorem. Submitted.

    Google Scholar 

  22. J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge University Press, 1986.

    Google Scholar 

  23. S. Mac Lane. Categories for the working mathematician. Second Edition. Springer, 1998.

    Google Scholar 

  24. F. W. Lawvere. Functorial semantics of elementary theories. Journal of symbolic logic, pages 294–295, 1966.

    Google Scholar 

  25. J. Meseguer. General logics. In Logic Colloquium 87, pages 275–329. North Holland, 1989.

    MATH  MathSciNet  Google Scholar 

  26. T. Mossakowski. Specification in an arbitrary institution with symbols. In C. Choppy, D. Bert, and P. Mosses, editors, 14th WADT, volume 1827 of Lecture Notes in Computer Science, pages 252–270. Springer-Verlag, 2000.

    Google Scholar 

  27. C. S. Peirce. Collected Papers. Harvard, 1965. In 6 volumes; see especially Volume 2: Elements of Logic.

    Google Scholar 

  28. F.J. Pelletier and A. Urquhart. Synonymous logics. Journal of Philosophical Logic, 32:259–285, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Pollard. Homeomorphism and the equivalence of logical systems. Notre Dame Journal of Formal Logic, 39:422–435, 1998.

    MATH  MathSciNet  Google Scholar 

  30. P.-H. Rodenburg. A simple algebraic proof of the equational interpolation theorem. Algebra Universalis, 28:48–51, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  31. D. Sannella and A. Tarlecki. Specifications in an arbitrary institution. Information and Computation, 76:165–210, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Schröder, T. Mossakowski, and C. Lüth. Type class polymorphism in an institutional framework. In José Fiadeiro, editor, 17th WADT, Lecture Notes in Computer Science. Springer; Berlin; http://www.springer.de, 2004. To appear.

    Google Scholar 

  33. A. Tarlecki. On the existence of free models in abstract algebraic institutions. Theoretical Computer Science, 37(3):269–304, 1985.

    MATH  MathSciNet  Google Scholar 

  34. A. Tarlecki. Bits and pieces of the theory of institutions. In D. Pitt, S. Abramsky, A. Poigné, and D. Rydeheard, editors, Proc. CTCS, volume 240 of Lecture Notes in Computer Science, pages 334–363. Springer-Verlag, 1986.

    Google Scholar 

  35. A. Tarlecki. Quasi-varieties in abstract algebraic institutions. Journal of Computer and System Sciences, 33:333–360, 1986.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Mossakowski, T., Goguen, J., Diaconescu, R., Tarlecki, A. (2005). What is a Logic?. In: Beziau, JY. (eds) Logica Universalis. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7304-0_7

Download citation

Publish with us

Policies and ethics