Skip to main content

A Critical Assessment of Density Functional Theory with Regard to Applications in Organometallic Chemistry

  • Chapter
  • First Online:
Organometallic Bonding and Reactivity

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 4))

Abstract

Reliable quantitative predictions from quantum chemical calculations are a rather recent part of the organo-metallic chemistry scene. The delay, compared to the rate of development in the case of small-to medium-sized organic molecules, was caused largely by the wide variety of valence electronic structures which come into play for transition metal organometallics. Such diversity of hybridization candidates is a challenge to commonly used Density Functional approximations, so it has been somewhat surprising that much of the recent theoretical and computational progress has come from DF calculations. For insight into both the power and limitations of current DF methodology, therefore, we give a descriptive, detailed, but minimally mathematical survey of the ingredients of Hohenberg-Kohn-Sham theory as currently practiced. This overview is followed by a description of the techniques used to build realistic chemistry and physics into the required approximations. After that the origins, properties, and inter-relationships of the more widely used approximations are discussed. In the final section, we give a brief account of the accuracy of current exchange-correlation approximations and of the way in which semi-empirical DF variants are calibrated. A suggestive survey highlights applications to transition metal organometallics, and, as a detailed example, a case study of oxygen transfer reactions by transition metal oxo and peroxo complexes is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hoffmann R (1982) Angew Chem Int Ed Engl 21:711

    Article  Google Scholar 

  2. Albright TA, Burdett JK, Whangbo MH (1985) Orbital interaction in chemistry. Wiley, New York

    Google Scholar 

  3. Hofmann P (1986) Applied MO theory: Organometallic structure and reactivity problems. In: Veillard A (ed) Quantum chemistry: The challenge of transition metals and coordination chemistry. NATO Advanced Science Institute Series C176. Reidel, Dordrecht, p 253

    Google Scholar 

  4. Hay PJ, Wadt WR (1985) J Chem Phys 82:271

    Google Scholar 

  5. Frenking G, Antes I, Böhme M, Dapprich S, Ehlers AW, Jonas V, Neuhaus A, Otto M, Stegmann R, Veldkamp A, Vyboishchikov SF (1996) Pseudopotential calculations of transition metal compounds: Scope and limitations. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, Vol 8. VCH, New York, p 63

    Chapter  Google Scholar 

  6. Almlöf J, Faegri Jr K, Korsell K (1982) J Comput Chem 3:385

    Article  Google Scholar 

  7. Häser M, Ahlrichs R J Comput Chem (1989) 10:104

    Article  Google Scholar 

  8. Siegbahn PEM (1983) The direct CI method. In: Diercksen GHF, Wilson S (eds) Methods in computational molecular physics. NATO Advanced Science Institute Series C113. Reidel, Dordrecht, p 189

    Google Scholar 

  9. Siegbahn PEM (1992) The configuration interaction method. In: Roos BO (ed) Lecture notes in quantum chemistry. Springer, Berlin Heidelberg New York, p 255

    Google Scholar 

  10. Gregory K, Schleyer PvR, Snaith R (1991) AdvInorg Chem 37:47

    CAS  Google Scholar 

  11. Kaufmann E, Raghavachari K, Reed AE, Schleyer PvR. (1988) Organometallics 7:1597

    Article  CAS  Google Scholar 

  12. Ziegler T (1991) Chem Rev 91:651

    Article  CAS  Google Scholar 

  13. Veillard A (ed) (1986) Quantum chemistry: The challenge of transition metals and coordination chemistry. NATO Advanced Science Institute Series C176. Reidel, Dordrecht

    Google Scholar 

  14. Rösch N, Jörg H, Dunlap BI (1986) Application of the LCGTO-Xα method to transition metal carbonyls. In: Veillard A (ed) Quantum chemistry: The challenge of transition metals and coordination chemistry. NATO Advanced Science Institute Series C176. Reidel, Dordrecht, p 179

    Google Scholar 

  15. Baerends EJ, Rozendaal A (1986) Analysis of σ-bonding, π-(back) bonding and the synergetic effect in Cr(CO)6. Comparison of Hartree-Fock and Xα results for metal-CO bonding. In: Ref. Veillard A (ed) Quantum chemistry: The challenge of transition metals and coordination chemistry. NATO Advanced Science Institute Series C176. Reidel, Dordrecht, p 159

    Google Scholar 

  16. Rösch N, Jörg H (1986) J Chem Phys 84:5967

    Article  Google Scholar 

  17. Salahub DR, Zerner MC (eds) (1989) The challenge of d and f electrons. Theory and computation. ACS Symposium Series 394. American Chemical Society, Washington, DC

    Google Scholar 

  18. Labanowski JK, Andzelm JW (eds) (1991) Density functional methods in chemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  19. Verluis L, Ziegler T (1988) J Chem Phys 88:322

    Article  Google Scholar 

  20. Fournier R, Andzelm J, Salahub DR (1989) J Chem Phys 90:6371

    Article  CAS  Google Scholar 

  21. Dunlap BI, Andzelm J, Mintmire JW (1990) Phys Rev A 42:6354

    Article  CAS  Google Scholar 

  22. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612

    Article  CAS  Google Scholar 

  23. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  24. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  25. Slater JC (1968) Quantum theory of matter, 2nd ed. McGraw-Hill, New York

    Google Scholar 

  26. Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw Hill, New York

    Google Scholar 

  27. Parr RG, Yang W (1989) Density-functional theory. Oxford University Press, Oxford

    Google Scholar 

  28. Jones RO, Gunnarson O (1989) Rev Mod Phys 61:689

    Article  CAS  Google Scholar 

  29. Dreizler RM, Gross EKU (1990) Density functional theory. Springer, Berlin Heidelberg New York

    Google Scholar 

  30. Trickey SB (ed) (1990) Density functional theory of many-fermion systems. Adv Quantum Chem 21. Academic Press, San Diego

    Google Scholar 

  31. Gross EKU, Dreizler RM (eds) (1995) Density functional theory. NATO Advanced Science Institute Series B337. Plenum Press, New York

    Google Scholar 

  32. Seminario JM, Politzer P (eds) (1995) Modern density functional theory. Elsevier Science, Amsterdam

    Google Scholar 

  33. Seminario JM (ed) (1996) Recent development and aplications of modern density functional theory. Elsevier Science, Amsterdam

    Google Scholar 

  34. Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974

    Article  CAS  Google Scholar 

  35. Bartolotti LJ, Flurchick K (1996) Introduction to density functional theory. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 7. VCH, NewYork, p 187

    Chapter  Google Scholar 

  36. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221

    Article  CAS  Google Scholar 

  37. Löwdin PO (1955) Phys Rev 97:1474

    Article  Google Scholar 

  38. Bartlett RJ (1981) Ann Rev Phys Chem 32:359

    Article  CAS  Google Scholar 

  39. Bartlett RJ, Stanton JF (1994) Applications of post-Hartree-Fock methods: A tutorial. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 5. VCH Publishers, New York, p 65

    Chapter  Google Scholar 

  40. Werner HJ (1987) Matrix-formulated direct multiconfiguration self-consistent field and multiconfiguration reference configuration-interaction methods. In: Lawley KP (ed) Ab initio methods in quantum chemistry, part II, Adv Chem Phys 69:1

    Google Scholar 

  41. Roos BO (1987) The complete active space self-consistent field method and its applications in electronic calculations. In: Lawley KP (ed) Ab initio methods in quantum chemistry, part II, Adv Chem Phys 69:399

    Google Scholar 

  42. Siegbahn PEM (1996) Electronic structure calculations for molecules containing transition metals. In: Prigogine I, Rice SA (eds) New methods in computational quantum mechanics. Adv Chem Phys 93:333

    Google Scholar 

  43. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  44. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  45. Lieb EH (1981) Rev Mod Phys 53:603

    Article  CAS  Google Scholar 

  46. van Wüllen C, private communication

    Google Scholar 

  47. Levy M (1979) Proc Nat Acad Sci 76:6002

    Google Scholar 

  48. Levy M (1990) Constrained-search formulation and recent coordinate scaling in density-functional theory. In: Trickey SB (ed) Density functional theory of many-fermion systems. Adv Quantum Chem 21. Academic Press, San Diego, p 69

    Chapter  Google Scholar 

  49. Dirac PAM (1930) Proc Cambridge Phil Soc 26:376

    Article  CAS  Google Scholar 

  50. Jones RS, Trickey SB (1987) Phys Rev B 36:3095

    Google Scholar 

  51. Burke K, Perdew JP, Levy M (1995) Semilocal density functionals for exchange and correlation: Theory and applications. In: Seminario JM, Politzer P (eds) Modern density functional theory. Elsevier Science, Amsterdam, p 29

    Chapter  Google Scholar 

  52. Talman JD, Shadwick WF, (1976) Phys. Rev. A 14:36

    Google Scholar 

  53. Kotani T (1995) Phys Rev Lett 74:2989

    Article  CAS  Google Scholar 

  54. Städele M, Majewski JA, Vogl P, Görling A (1997) Phys Rev Lett 79:2089

    Article  Google Scholar 

  55. Krieger JB, Li Y, Iafrate GJ (1992) Phys Rev A 45:101

    Article  CAS  Google Scholar 

  56. Grabo T, Gross EKU (1997) Int J Quantum Chem 64:95

    Article  CAS  Google Scholar 

  57. Slater JC, Wood JH (1971) Int J Quantum Chem Symp 4:3

    Google Scholar 

  58. Janak JF (1978) Phys. Rev. B 18:7165

    Google Scholar 

  59. Schlüter M, Sham LJ (1990) Density functional theory of the band gap. In: Trickey SB (ed) Density functional theory of many-fermion systems. Adv Quantum Chem 21. Academic Press, San Diego, p 97

    Chapter  Google Scholar 

  60. Perdew JP (1990) Size-consistency, self-interaction correction, and derivative discontinuity in density functional theory. In: Trickey SB (ed) Density functional theory of many-fermion systems. Adv Quantum Chem 21. Academic Press, San Diego, p 113

    Chapter  Google Scholar 

  61. Görling A (1996) Phys Rev A 54:3912

    Google Scholar 

  62. Harris J, Jones RO (1974) J Phys F: Solid State Phys 4:1170

    Google Scholar 

  63. Langreth DC, Perdew JP (1975) Solid State Commun 17:1425

    Article  Google Scholar 

  64. Gunnarson O, Lundqvist (1976) Phys Rev B 13:4274

    Google Scholar 

  65. Savin A, Umrigar CJ, Gonze X (1998) Chem Phys Lett 288:391

    Article  CAS  Google Scholar 

  66. Umrigar CJ, Savin A, Gonze X (1998) Are unoccupied Kohn-Sham eigenvalues related to excitation energies? In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory: recent progress and new directions. Plenum, New York, p 167

    Google Scholar 

  67. Filippi C, Umrigar CJ, Gonze X (1997) J Chem Phys 107:9994

    Article  CAS  Google Scholar 

  68. See, for example, Salem L (1966) Molecular orbital theory of conjugated systems, Benjamin, New York, p 110

    Google Scholar 

  69. Hoffmann R (1963) J Chem Phys 39:1397

    Article  CAS  Google Scholar 

  70. Mulliken RS (1952) J Am Chem Soc 64:811

    Article  Google Scholar 

  71. Pearson RG (1963) J Am Chem Soc 85:3533

    Article  CAS  Google Scholar 

  72. Pearson RG (1997) Chemical hardness. Applications from molecules to solids. Wiley-VCH, Weinheim

    Google Scholar 

  73. Parr RG, Yang W (1989) Density-functional theory. Oxford University Press, Oxford, chaps 4 and 5

    Google Scholar 

  74. Geerlings P, De Proft F, Martin JML (1996) Density-functional theory concepts and techniques for studying molecular charge distributions and related properties. In: Seminario JM (ed) Recent development and aplications of modern density functional theory. Elsevier Science, Amsterdam, p 773

    Chapter  Google Scholar 

  75. Nalewajski RF (1990) Charge sensitivity analysis as diagnostic tool for predicting trends in chemical reactivity. In: Ref Politzer P (eds) (1995) Modern density functional theory. Elsevier Science, Amsterdam [31] p 339

    Google Scholar 

  76. Slater JC (1974) The self-consistent field for molecules and solids: Quantum theory of molecules and solids, Vol IV. McGraw-Hill, New York

    Google Scholar 

  77. Savin A (1995) Beyond the Kohn-Sham determinant. In: Chong DP (ed) Recent advances in density functional methods. World Scientific, Singapore, p 129

    Google Scholar 

  78. Ziegler T, Rauk A, Baerends EJ (1977) Theor Chim Acta (Berl) 43:261

    Article  CAS  Google Scholar 

  79. Barth U von (1979) Phys Rev A 20:1693

    Google Scholar 

  80. Filatov M, Shaik S (1998) Chem Phys Lett 288:689

    Article  CAS  Google Scholar 

  81. Stückl AC, Daul CA, Güdel HU (1997) Int J Quantum Chem 61:579and references cited therein

    Article  Google Scholar 

  82. Weiner B, Trickey SB (1998) Int J Quantum Chem 69:451

    Article  CAS  Google Scholar 

  83. Görling A (1993) Phys Rev A 47:2783

    Google Scholar 

  84. Dunlap BI (1991) Symmetry and local potential methods. In: Labanowski JK, Andzelm JW (eds) Density functional methods in chemistry. Springer, Berlin Heidelberg New York, p 49

    Google Scholar 

  85. Löwdin PO (1963) Rev Mod Phys 35:496

    Article  Google Scholar 

  86. Bauernschmitt R, Ahlrichs R (1996) J Chem Phys 104:9047

    Article  CAS  Google Scholar 

  87. Becke AD (1988) Phys Rev A 38:3098

    Google Scholar 

  88. van Leeuwen R, Baerends EJ (1994) Phys Rev A 49:2421

    Google Scholar 

  89. Ernzerhof M, Burke K, Perdew JP (1996) Density functional theory, the exchange hole, and the molecular bond. In: Seminario JM (ed) Recent development and aplications of modern density functional theory. Elsevier Science, Amsterdam, p 207

    Chapter  Google Scholar 

  90. Umrigar CJ, Gonze X (1994) Phys Rev A 50:3827

    Google Scholar 

  91. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    CAS  Google Scholar 

  92. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Google Scholar 

  93. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Google Scholar 

  94. Kristyan S, Pulay P (1994) Chem Phys Lett 229:175

    Article  CAS  Google Scholar 

  95. Pérez-Jordá JM, Becke AD (1995) Chem Phys Lett 233:134

    Article  Google Scholar 

  96. Hedin L, Lundqvist BI (1971) J Phys C: Solid State Phys 4:2064

    Article  Google Scholar 

  97. Moruzzi VL, Janak JF, Williams AR (1978) Calculated electronic properties of metals. Pergamon, New York, p 26

    Google Scholar 

  98. Perdew JP (1991) Unified theory of exchange and correlation beyond the local density approximation. In: Ziesche P, Eschrig H (eds) Electronic structure of solids. Akademie Verlag, Berlin

    Google Scholar 

  99. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Filohais C (1992) Phys Rev B 46:6671

    Google Scholar 

  100. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865; (1997) Phys Rev Lett 78:1396 (E)

    Article  CAS  Google Scholar 

  101. Perdew JP, Wang Y (1986) Phys Rev B 33:8800; (1989) Phys Rev B 40:3399

    Google Scholar 

  102. Perdew JP (1986) Phys Rev B 33:8822

    Google Scholar 

  103. Zhang Y, Yang W (1998) Phys Rev Lett 80:890

    Article  CAS  Google Scholar 

  104. Perdew JP, Burke K, Ernzerhof M (1998) Phys Rev Lett 80:891

    Article  CAS  Google Scholar 

  105. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Google Scholar 

  106. Colle R, Salvetti O (1975) Theor Chim Acta 37:329

    Article  CAS  Google Scholar 

  107. Morrison RC (1993) Int J Quantum Chem 46:583

    Article  CAS  Google Scholar 

  108. Proynov EI, Salahub DR (1994) Phys Rev B 49:7874

    Google Scholar 

  109. Proynov EI, Vela A, Salahub DR (1995) Chem Phys Lett 230:419; Erratum (1995) ibid. 234:462

    Article  Google Scholar 

  110. Proynov EI, Ruiz E, Vela A, Salahub DR (1995) Internat J Quantum Chem S29:61

    Article  Google Scholar 

  111. Proynov EI, Sirois S, Salahub DR (1996) Internat J Quantum Chem 64:427

    Article  Google Scholar 

  112. Filippi C, Gonze X, Umrigar CJ (1996) Generalized gradient approximations to density functional theory: comparison with exact results. In: Seminario JM (ed) Recent development and aplications of modern density functional theory. Elsevier Science, Amsterdam, p 295

    Chapter  Google Scholar 

  113. Towler MD, Zupan A, Causa M (1996) Comp Phys Comm 98:181. Appendix A

    Article  CAS  Google Scholar 

  114. Barone V (1995) Structure, magnetic properties, and reactivities of open-shell species from density functional and self-consistent hybrid methods. In: Chong DP (ed) Recent advances in density functional methods. World Scientific, Singapore, p 287

    Google Scholar 

  115. Seminario JM, (1990) An introduction to density functional theory in chemistry. In: Ref Politzer P (eds) (1995) Modern density functional theory. Elsevier Science, Amsterdam [31] p1

    Google Scholar 

  116. Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith T, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1995) Gaussian 94, Gaussian Inc, Pittsburgh PA

    Google Scholar 

  117. Görling A, Ernzerhof M (1995) Phys Rev A 51:4501

    Google Scholar 

  118. Görling A, Levy M (1997) J Chem Phys 106:2675

    Article  Google Scholar 

  119. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Article  CAS  Google Scholar 

  120. Curtiss LA, Raghavachari K, Pople JA (1995) J Chem Phys 103:4192

    Article  CAS  Google Scholar 

  121. Raghavachari K, Curtiss LA (1995) Evaluation of bond energies to chemical accuracy by quantum chemical. In: Yarkony DR (ed) Modern electronic structure theory. World Scientific, Singapore, p 991

    Google Scholar 

  122. Siegbahn Blomberg MRA, Svensson M (1994) Chem Phys Lett 223:35

    Article  CAS  Google Scholar 

  123. Siegbahn Svensson M, Boussard PJE (1995) J Chem Phys 102:5377

    Article  CAS  Google Scholar 

  124. Ceperley DM, Alder BJ (1980) Phys Rev Lett 45:566

    Article  CAS  Google Scholar 

  125. Becke AD (1992) J Chem Phys 96:2155

    Article  CAS  Google Scholar 

  126. Peterson GA, Al-Laham MA (1991) J Chem Phys 94:6081

    Article  Google Scholar 

  127. Peterson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193

    Article  Google Scholar 

  128. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063

    Article  CAS  Google Scholar 

  129. Baker J, Muir M, Andzelm J (1995) J Chem Phys 102:2063

    Article  CAS  Google Scholar 

  130. Baker J, Muir M, Andzelm J, Scheiner A (1996) Hybrid Hartree-Fock density-functional theory functionals: the adiabatic connection method. In: Laird BB, Ross RB, Ziegler T (eds) Chemical applications of density-functional theory. ACS Symposium Series 629, American Chemical Society, Washington DC, p 342

    Google Scholar 

  131. Stanton RV, Merz Jr KM (1994) J Chem Phys 100:434

    Article  CAS  Google Scholar 

  132. Jursic BS (1996) Computing transition state structure with density functional theory methods. In: Seminario JM (ed) Recent development and aplications of modern density functional theory. Elsevier Science, Amsterdam, p 709

    Chapter  Google Scholar 

  133. Johnson BG, Gonzales CA, Gill PMW, Pople JA (1994) Chem Phys Lett 221:100

    Article  CAS  Google Scholar 

  134. Gunnarsson O, Jones RO (1995) Phys Rev B 31:7588

    Google Scholar 

  135. Ziegler T, Li J (1994) Can J Chem 72:783

    Article  CAS  Google Scholar 

  136. Blomberg MRA, Siegbahn Svensson M (1996) J Chem Phys 104:9546

    Article  CAS  Google Scholar 

  137. Rösch N, Trickey SB (1997) J Chem Phys 106:8940

    Article  Google Scholar 

  138. Ehlers A, Frenking G (1993) J Chem Soc Chem Commun: 1709

    Google Scholar 

  139. Ehlers A, Frenking G (1994) J Am Chem Soc 116:1514

    Article  CAS  Google Scholar 

  140. Blomberg MRA, Brandemark UB, Siegbahn Wennerberg J, Bauschlicher Jr CW (1988) J Am Chem Soc 110:6650

    Article  CAS  Google Scholar 

  141. Bauschlicher Jr CW, Langhof SR (1989) Chem Phys 129:431

    Article  CAS  Google Scholar 

  142. Barnes LA, Rosi M, Bauschlicher Jr CW (1991) J Chem Phys 94:2031

    Article  CAS  Google Scholar 

  143. Blomberg MRA, Siegbahn Lee TJ, Rendell AP, Rice JE (1991) J Chem Phys 95:5898

    Article  CAS  Google Scholar 

  144. Stevens AE, Feigerle CS, Lineberger WC (1982) J Am Chem Soc 104:5026

    Article  CAS  Google Scholar 

  145. Lewis KE, Golden DM, Smith GP (1984) J Am Chem Soc 106:3905

    Article  CAS  Google Scholar 

  146. Li J, Schreckenbach G, Ziegler T (1995) J Am Chem Soc 117:486

    Article  CAS  Google Scholar 

  147. Jonas V, Thiel W (1995) J Chem Phys 102:8474

    Article  CAS  Google Scholar 

  148. Fournier R, Pápai I (1995) Infrared spectra and binding energies of transition metalmonoligand complexes. In: Chong DP (ed) Recent advances in density functional methods. World Scientific, Singapore, p 219

    Google Scholar 

  149. Nasluzov VA, Rösch N (1996) Chem Phys 210:413

    Article  CAS  Google Scholar 

  150. Bauschlicher Jr CW, Partridge H, Sheehy JA, Langhoff SR, Rosi M (1992) J Phys Chem 96:6969

    Article  CAS  Google Scholar 

  151. Holthausen MC, Heinemann Cornehl HH, Koch W, Schwarz H (1995) J Chem Phys 102:4931

    Article  CAS  Google Scholar 

  152. Holthausen MC, Mohr M, Koch W (1995) Chem Phys Lett 240:245

    Article  CAS  Google Scholar 

  153. Ricca A, Bauschlicher CW Jr (1995) Chem Phys Lett 245:150

    Article  CAS  Google Scholar 

  154. Rohlfing CM, Hay PJ (1985) J Chem Phys 83:4641

    Article  CAS  Google Scholar 

  155. Lüthi HP, Siegbahn Almlöf J (1985) J Phys Chem 89:2156

    Article  Google Scholar 

  156. Barnes LA, Liu B, Lindh R (1993) J Chem Phys 98:3978

    Article  CAS  Google Scholar 

  157. Jonas V, Thiel W (1996) J Chem Phys 105:3636

    Article  CAS  Google Scholar 

  158. Bray MR, Deeth RJ, Paget VJ, Sheen PD (1996) Int J Quantum Chem 61:85

    Article  Google Scholar 

  159. Bérces A, Ziegler T (1994) J Phys Chem 98:13233

    Article  Google Scholar 

  160. Bérces A (1996) J Phys Chem 100:16538

    Article  Google Scholar 

  161. Wachters AJH (1970) J Chem Phys 52:1033

    Article  CAS  Google Scholar 

  162. Dunning Jr TH (1971) J Chem Phys 55:716

    Article  CAS  Google Scholar 

  163. Dolg M, Wedig U, Stoll H, Preuß H (1987) J Chem Phys 86:866

    Article  CAS  Google Scholar 

  164. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77:123

    Article  CAS  Google Scholar 

  165. Delley B, Wrinn M, Lüthi HP (1994) J Chem Phys 100:5785

    Article  CAS  Google Scholar 

  166. Delley B (1994) DMol a Standard tool for density functional calculations: review and advances. In: Seminario JM, Politzer P (eds) Density functional theory. Elsevier Science, Amsterdam p 221

    Google Scholar 

  167. Braterman PS (1975) Metal carbonyl spectra. Academic, London

    Google Scholar 

  168. Jones LH, McDowell RS, Goldblatt M (1969) Inorg Chem 8:2349

    Article  CAS  Google Scholar 

  169. Merle-Mejean T, Cosse-Mertens C, Bouchareb S, Galan F, Mascetti J, Tranquille M (1992) J Phys Chem 96:9148

    Article  CAS  Google Scholar 

  170. Rösch N, Krüger S, Mayer M, Nasluzov VA (1996) The Douglas-Kroll-Hess approach to relativistic density functional theory: methodological aspects and applications to metal complexes and clusters. In: Seminario JM (ed) Recent development and aplications of modern density functional theory. Elsevier Science, Amsterdam, p 497

    Chapter  Google Scholar 

  171. Dunning Jr TH, Hay PJ (1976) Gaussian basis sets for molecular calculations. In: Schaefer III HF (ed) Modern theoretical chemistry, Vol 3, New York, p 1

    Google Scholar 

  172. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  173. Kolb HC, VanNieuwenzhe MS, Sharpless KB (1994) Chem Rev 94:2483

    Article  CAS  Google Scholar 

  174. Johnson RA, Sharpless KB (1993) Catalytic asymmetric dihydroxylation. In:. Ojima I (ed) Catalytic asymmetric synthesis. VCH, New York

    Google Scholar 

  175. Jacobsen EN (1993) Asymmetric catalytic epoxidation of unfunctionalized olefins. In: Ojima I (ed) Catalytic asymmetric synthesis. VCH, New York

    Google Scholar 

  176. Sheldon RA (1992) Catalytic oxydations with hydrogen peroxides as oxidant. Kluwer, Rotterdam

    Google Scholar 

  177. Jorgensen KA (1989) Chem Rev 89:431

    Article  Google Scholar 

  178. Herrmann WA (1995) J Organomet Chem 500:149

    Article  CAS  Google Scholar 

  179. Herrmann WA, Kühn FE (1997) Acc Chem Res 30:169

    Article  CAS  Google Scholar 

  180. Romão CC, Kühn FE, Herrmann WA (1997) Chem Rev 97:3197

    Article  Google Scholar 

  181. Pidun U, Boehme C, Frenking G (1996) Angew Chem Int Ed Engl 35:2817

    Article  CAS  Google Scholar 

  182. Dapprich S, Ujaque G, Maseras F, Lledos A, Musaev DG, Morokuma K (1996) J Am Chem Soc 118:11660

    Article  CAS  Google Scholar 

  183. Torrent M, Deng L, Duran M, Sola M, Ziegler T (1997) Organometallics 16:13

    Article  CAS  Google Scholar 

  184. DelMonte AJ, Haller J, Houk KN, Sharpless KB, Singleton DA, Strassner T, Thomas AA (1997) J Am Chem Soc 119:9907

    Article  CAS  Google Scholar 

  185. Gisdakis P, Antonczak S, Köstlmeier S, Herrmann WA, Rösch N (1998) Angew Chem 110:2331

    Article  Google Scholar 

  186. Wu YD, Sun J (1998) J Org Chem 63:1752

    Article  CAS  Google Scholar 

  187. Criegee R, Marchand B, Wannowius H (1942) Justus Liebigs Ann Chem 550:99

    Article  CAS  Google Scholar 

  188. Herrmann WA, Fischer RW, Scherer W, Rauch MU (1993) Angew Chem Int Ed Engl 32:1157

    Article  Google Scholar 

  189. Al-Ajlouni AM, Espenson JH (1995) J Am Chem Soc 117:9243

    Article  CAS  Google Scholar 

  190. Al-Ajlouni AM, Espenson JH (1996) J Org Chem 61:3969

    Article  CAS  Google Scholar 

  191. Köstlmeier S, Nasluzov VA, Herrmann WA, Rösch N (1997) Organometallics 16:1786

    Article  Google Scholar 

  192. Sharpless KB, Townsend JM, Williams DR (1972) J Am Chem Soc 94:195

    Google Scholar 

  193. Mimoun H, de Roch IS, Sajus L (1970) Tetrahedron 26:37

    Article  CAS  Google Scholar 

  194. Thiel WR (1996) Chem Ber 129:575

    Article  CAS  Google Scholar 

  195. Gisdakis P, Rösch N unpublished results

    Google Scholar 

  196. Singleton DA, Merrigan SR, Liu J, Houk KN (1997) J Am Chem Soc 119:3385

    Article  CAS  Google Scholar 

  197. Bach RD, Estévez CM, Winter JE, Glukhovtsev MN (1998) J Am Chem Soc 120:680

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Görling, A., Trickey, S.B., Gisdakis, P., Rösch, N. (1999). A Critical Assessment of Density Functional Theory with Regard to Applications in Organometallic Chemistry. In: Brown, J.M., Hofmann, P. (eds) Organometallic Bonding and Reactivity. Topics in Organometallic Chemistry, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69707-1_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-69707-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64253-4

  • Online ISBN: 978-3-540-69707-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics