Skip to main content

Resource-bounded balanced genericity, stochasticity and weak randomness

  • Conference paper
  • First Online:
STACS 96 (STACS 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1046))

Included in the following conference series:

Abstract

We introduce balanced t(n)-genericity which is a refinement of the genericity concept of Ambos-Spies, Fleischhack and Huwig [2] and which in addition controls the frequency with which a condition is met. We show that this concept coincides with the resource-bounded version of Church's stochasticity [6]. By uniformly describing these concepts and weaker notions of stochasticity introduced by Wilber [19] and Ko [11] in terms of prediction functions, we clarify the relations among these resource-bounded stochasticity concepts. Moreover, we give descriptions of these concepts in the framework of Lutz's resource-bounded measure theory [13] based on martingales: We show that t(n)-stochasticity coincides with a weak notion of t(n)-randomness based on so-called simple martingales but that it is strictly weaker than t(n)-randomness in the sense of Lutz.

Supported by the Human Capital and Mobility Program of the European Community under grant CHRX-CT93-0415 (COLORET).

Supported in part by the EC through the Esprit Bra project 7141 (ALCOM II), and by the Spanish government through project DGICYT PB94-0564 and Accion Integrada HA-119.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ambos-Spies. Resource-bounded genericity. To appear in Computability, Enumerability and Unsolvability: Directions in Recursion Theory (B. Cooper et al., Eds.), Cambridge University Press. Extended abstract in Proc. 10th Conf. on Structure in Complexity Theory, pages 162–181. IEEE Computer Society Press, 1995.

    Google Scholar 

  2. K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizations over deterministic polynomial time. In Proc. of CSL 87, Lecture Notes in Comput. Sci. 329, pages 1–16. Springer Verlag, 1988.

    Google Scholar 

  3. K. Ambos-Spies, H.-C. Neis, and S. A. Terwijn. Genericity and measure for exponential time. Theoret. Comput. Sci. (to appear). Extended abstract in Proc. MFCS 94, Lecture Notes in Comput. Sci. 841, pages 221–232. Springer Verlag, 1994.

    Google Scholar 

  4. K. Ambos-Spies, S. A. Terwijn, and X. Zheng. Resource-bounded randomness and weakly complete problems. Theoret. Comput. Sci. (to appear). Extended abstract in Proc. 5th ISAAC, Lecture Notes in Comput. Sci. 834, pages 369–377. Springer Verlag, 1994.

    Google Scholar 

  5. J. L. Balcazar and E. Mayordomo. A note on genericity and bi-immunity. In Proc. 10th Conf. on Structure in Complexity Theory, pages 193–196. IEEE Computer Society Press, 1995.

    Google Scholar 

  6. A. Church. On the concept of a random sequence. Bull. Amer. Math. Soc., 45:130–135, 1940.

    Google Scholar 

  7. R. A. Di Paola. Random sets in subrecursive hierarchies. J. Assoc. Comput. Mach., 16:621–630, 1969.

    Google Scholar 

  8. S. A. Fenner. Notions of resource-bounded category and genericity. In Proc. 6th Conf. on Structure in Complexity Theory, pages 196–221. IEEE Computer Society Press, 1991.

    Google Scholar 

  9. S. A. Fenner. Resource-bounded Baire category: A stronger approach. In Proc. 10th Conf. on Structure in Complexity Theory, pages 182–192. IEEE Computer Society Press, 1995.

    Google Scholar 

  10. D. Juedes and J. H. Lutz. Weak completeness in E and E 2. Theoret. Comput. Sci., 143:149–158, 1995.

    Article  Google Scholar 

  11. K. Ko. On the notion of infinite pseudorandom sequences. Theoret. Comput. Sci., 48:9–33, 1986.

    Article  Google Scholar 

  12. J. H. Lutz. Category and measure in complexity classes. SIAM J. Comput., 19:1100–1131, 1990.

    Article  Google Scholar 

  13. J. H. Lutz. Almost everywhere high nonuniform complexity. J. Comput. and System Sci., 44:220–258, 1992.

    Article  Google Scholar 

  14. E. Mayordomo. Contributions to the study of resource-bounded measure. PhD thesis, Barcelona, 1994.

    Google Scholar 

  15. C. P. Schnorr. Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeittheorie. Lecture Notes in Math. 21. Springer Verlag, 1971.

    Google Scholar 

  16. V. A. Uspenskii, A. L. Semenov, and A. Kh. Shen. Can an individual sequence of zeros and ones be random? Russian Math. Surveys, 45:121–189, 1990.

    Google Scholar 

  17. J. Ville. Ètude Critique de la Notion de Collectif. Gauthiers-Villars, Paris, 1939.

    Google Scholar 

  18. R. von Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Math. Z., 5:52–89, 1919.

    Article  Google Scholar 

  19. R. Wilber. Randomness and the density of hard problems. In Proc. 24th IEEE Symp. on Foundations of Computer Science, pages 335–342, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Claude Puech Rüdiger Reischuk

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ambos-Spies, K., Mayordomo, E., Wang, Y., Zheng, X. (1996). Resource-bounded balanced genericity, stochasticity and weak randomness. In: Puech, C., Reischuk, R. (eds) STACS 96. STACS 1996. Lecture Notes in Computer Science, vol 1046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60922-9_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-60922-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60922-3

  • Online ISBN: 978-3-540-49723-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics