Skip to main content

Microscopic reversibility and macroscopic behavior: Physical explanatoins and mathematical derivations

  • Conference paper
  • First Online:
25 Years of Non-Equilibrium Statistical Mechanics

Part of the book series: Lecture Notes in Physics ((LNP,volume 445))

Abstract

The observed general tune-asymmetric behavior of macroscopic systems—embodied in the second law of thermodynainics—arises naturally from time-symmetric microscopic laws due to the great disparity between macro and inicro-scales. More specific features of macroscopic evolution depend on the nature of the microscopic dynamics. In particular, short range interactions with good mixing properties lead, for simple systems, to the quantitative description of such evolutions by means of autonomous hydrodynamic equations, e.g. the diffusion equation. These deterministic time-asynunetric equations accurately describe the observed behavior of individual macro systems. Derivations using ensembles (or probability distributions) must therefore, to be relevant, hold for almost all members of the ensemble, i.e. occur with probability close to one. Equating observed irreversible macroscopic behavior with the time evolution of ensembles describing systems having only a few degrees of freedom, where no such typicality holds, is misguided and misleading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Thomson, Proc. of the Royal Soc. of Edinburgh, 8 325 (1874), reprinted in 1 a).

    Google Scholar 

  2. For a collection of original articles of Boltzmann and others from the second half of the nineteenth century on this subject (all in English) see S.G. Brush, Kinetic Theory, Pergamon, Oxford, (1966)

    Google Scholar 

  3. For an interesting biography of Boltzmann, which also contains many references, see E. Broda Ludwig Boltzmann, Man-Physicist-Philosopher, Ox Bow Press, Woodbridge, Conn (1983); translated from the German.

    Google Scholar 

  4. For a historical discussion of Boltzmann and his ideas see also articles by M. Klein, E. Broda, L. Flamn in The Boltzmann Equation, Theory and Application, E.G.D. Cohen and W. Thirring, eds., Springer-Verlag, 1973.

    Google Scholar 

  5. For a general history of the subject see S.G. Brush, The Kind of Motion We Call Heat, Studies in Statistical Mechanics, vol. VI, E.W. Montroll and J.L. Lebowitz, eds. North-Holland, Amsterdam, (1976).

    Google Scholar 

  6. G. Gallavotti, Ergodicity, Ensembles, Irreversibility in Boltzmann and Beyond, J. Stat. Phys., to appear, (1995).

    Google Scholar 

  7. R. Feynman, The Character of Physical Law, MIT P., Cambridge, Mass. (1967), ch.5. R.P Feyninan, R. B Leighton, M. Sands, The Feynman Lectures on Physics, Addison-Wesley, Reading, Mass. (1963), sections 46-3, 5.

    Google Scholar 

  8. O. Penrose, Foundations of Statistical Mechanics, Pergamon, Elinsford, N.Y. (1970), ch. 5.

    Google Scholar 

  9. R. Penrose, The Emperor's New Mind, Oxford U. P., New York (1990), ch. 7.

    Google Scholar 

  10. D. Ruelle, Chance and Chaos, Princeton U. P., Princeton, N.J. (1991), ch. 17, 18.

    Google Scholar 

  11. O. Lanford, Physica A 106, 70 (1981).

    Google Scholar 

  12. J.L. Lebowitz, Physica A 194, 1 (1993).

    Google Scholar 

  13. J.C. Maxwell, Theory of Heat, p. 308: “Tait's Thermodynamics”, Nature 17, 257 (1878). Quoted in M. Klein, ref. 1c).

    Google Scholar 

  14. H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, New York (1991). A. De Masi, E. Presutti, Mathematical Methods for Hydrodynamic Limits, Lecture Notes in Math 1501, Springer-Verlag, New York (1991). J.L. Lebowitz, E. Presutti, H. Spohn, J. Stat. Phys. 51, 841 (1988).

    Google Scholar 

  15. Y. Aharonov, P.G. Bergmann, J.L. Lebowitz, Phys. Rev. B 134, 1410 (1964). D.N. Page, Phys. Rev. Lett. 70, 4034 (1993).

    Google Scholar 

  16. J.S. Bell, Speakable and Unspeakable, in Quantum Mechanics, Cambridge U. P., New York (1987)

    Google Scholar 

  17. D. DĂĽrr, S. Goldstein, N. Zanghi, J. Stat. Phys. 67, 843 (1992).

    Google Scholar 

  18. See articles by M. Gell-Mann, J. Hartle, R. Grifliths, D. Page and others in Physical Origin of Time Asymmetry, J.J. Halliwell, J. Perez-Mercader and W.H. Zurek, eds., Cambridge University Press, 1994.

    Google Scholar 

  19. Vorlesungen ĂĽber Gastheorie. 2 vols. Leipzig: Barth, 1896, 1898. This book has been translated into English by S.G. Brush, Lectures on Gas Theory, (London: Cambridge University Press, 1964).

    Google Scholar 

  20. J.W. Gibbs, Connecticut Academy Transactions 3, 229 (1875), reprinted in The Scientific Papers, 1, 167 (New York, 1961).

    Google Scholar 

  21. L. Boltzmann, Ann. der Physik 57, 773 (1896). Reprinted in 1a).

    Google Scholar 

  22. E. Schrödinger, What is Life? And Other Scientific Essays, Doubleday Anchor Books, New York (1965), section 6.

    Google Scholar 

  23. J.L. Lebowitz and H. Spohn, Communications on Pure and Applied Mathematics, XXXVI,595, (1983); see in particular section 6(i).

    Google Scholar 

  24. L. Boltzmann (1886) quoted in E. Broda, 1b), p. 79.

    Google Scholar 

  25. E.L. Hahn, Phys. Rev. 80, 580 (1950). See also S. Zhang, B.H. Meier, R.R. Ernst, Phys. Rev. Let.. 69 2149 (1992).

    Google Scholar 

  26. D. Levesque and L. Verlet, J. Stat. Phys. 72, 519 (1993).

    Google Scholar 

  27. B.T. Nadiga, J.E. Broadwell and B. Sturtevant, Rarefteld Gas Dynamics: Theoretical and Computational Techniques, edited by E.P. Muntz, D.P. Weaver and D.H. Campbell, Vol 118 of Progress in Astronautics and Aeronautics, AIAA, Washington, DC, ISBN 0-930-40355-X, 1989.

    Google Scholar 

  28. E.T. Jaynes, Phys. Rev. A4, 747 (1971).

    Google Scholar 

  29. A. Einstein, Am. Phys. (Leipzig) 22, 180 (1907); 33, 1275 (1910). L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. J. Brey J. Marro J. M. RubĂ­ M. San Miguel

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this paper

Cite this paper

Lebowitz, J.L. (1995). Microscopic reversibility and macroscopic behavior: Physical explanatoins and mathematical derivations. In: Brey, J.J., Marro, J., RubĂ­, J.M., San Miguel, M. (eds) 25 Years of Non-Equilibrium Statistical Mechanics. Lecture Notes in Physics, vol 445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59158-3_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-59158-3_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59158-0

  • Online ISBN: 978-3-540-49203-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics