Skip to main content

From inductive inference to algorithmic learning theory

  • Invited Papers
  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 1992)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 743))

Included in the following conference series:

Abstract

We present two phenomena which were discovered in pure recursion-theoretic inductive inference, namely inconsistent learning (learning strategies producing apparently “senseless” hypotheses can solve problems unsolvable by “reasonable” learning strategies) and learning from good examples (“much less” information can lead to much more learning power). Recently, it has been shown that these phenomena also hold in the world of polynomial-time algorithmic learning. Thus inductive inference can be understood and used as a source of potent ideas guiding both research and applications in algorithmic learning theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D., On the complexity of minimum inference of regular sets. Information and Control 39 (1978) 337–350.

    Article  Google Scholar 

  2. Angluin, D., Finding patterns common to a set of strings. Journal of Computer and System Sciences 21 (1980) 46–62.

    Article  Google Scholar 

  3. Angluin, D., Computational learning theory: Survey and selected bibliography. Proc. ACM Symposium on Theory of Computing, ACM Press, 351–368, 1992.

    Google Scholar 

  4. Angluin, D. and Smith, C. H., Inductive inference: Theory and methods. Computing Surveys 15 (1983), 237–269.

    Article  Google Scholar 

  5. Barzdin, J., Two theorems on the limiting synthesis of functions. In[28], vol.1 (1974), 82–88 (in Russian).

    Google Scholar 

  6. Barzdin, J., Inductive inference of automata, functions and programs. Proc. Int. Congress of Mathematicians, 455–460, 1974.

    Google Scholar 

  7. Blum, L. and Blum, M., Toward a mathematical theory of inductive inference. Information and Control 28 (1975) 122–155.

    Google Scholar 

  8. Case, J. and Smith, C., Comparison of identification criteria for machine inductive inference. Theoretical Computer Science 25 (1983) 193–220.

    Article  Google Scholar 

  9. Daley, R., On the error correcting power of pluralism in inductive inference. Theoretical Computer Science 24 (1983) 95–104.

    Google Scholar 

  10. Freivalds, R., Finite identification of general recursive functions by probabilistic strategies. Proc. Conf. Foundations of Computation Theory, Akademie-Verlag, 138–145, 1979.

    Google Scholar 

  11. Freivalds, R., Kinber, E. B. and Wiehagen, R., On the power of inductive inference from good examples. Theoretical Computer Science (to appear).

    Google Scholar 

  12. Fulk, M., Saving the phenomena: Requirements that inductive inference machines not contradict known data. Information and Computation 79 (1988) 193–209.

    Google Scholar 

  13. Garey, M. R. and Johnson, D. S., Computers and Intractability, Freeman and Company, 1979.

    Google Scholar 

  14. Gold, E. M., Language identification in the limit. Information and Control 10 (1967) 447–474.

    Article  Google Scholar 

  15. Gold, E. M., Complexity of automaton identification from given data. Information and Control 37 (1978) 302–320.

    Article  Google Scholar 

  16. Jain, S. and Sharma, A., Finite learning by a team. Proc. Third Annual Workshop on Computational Learning Theory, Morgan Kaufmann, 163–177, 1990.

    Google Scholar 

  17. Jantke, K. P. and Beick, H.-R., Combining postulates of naturalness in inductive inference. Journal of Information Processing and Cybernetics (EIK) 17 (1981) 465–484.

    Google Scholar 

  18. Kearns, M. and Pitt, L., A polynomial-time algorithm for learning k-variable pattern languages from examples. Proc Second Annual on Computational Learning Theory, Morgan Kaufmann, 57–70, 1989.

    Google Scholar 

  19. Klette, R. and Wiehagen, R., Research in the theory of inductive inference by GDR mathematicians—a survey. Information Sciences 22 (1980) 149–169.

    Google Scholar 

  20. Ko, Ker-I, Marron, A. and Tzeng, W.-G., Learning string patterns and tree patterns from examples. Proc. Seventh Int. Conf. on Machine Learning, Morgan Kaufmann, 384–391, 1990.

    Google Scholar 

  21. Lange, S. and Wiehagen, R., Polynomial-time inference of arbitrary pattern languages. New Generation Computing 8 (1991) 361–370.

    Google Scholar 

  22. Osherson, D., Stob, M. and Weinstein, S., Systems that learn. MIT Press, 1986.

    Google Scholar 

  23. Pitt, L., Inductive inference, DFA's, and computational complexity. Proc. Int. Workshop on Analogical and Inductive Inference, Lecture Notes in Artificial Intelligence 397 (1989) 18–44.

    Google Scholar 

  24. Pitt, L. and Warmuth, M. K., The minimum consistent DFA problem cannot be approximated within any polynomial. Tech. Report UIUCDCS-R-89-1499, University of Illinois at Urbana-Champaign, Febr. 1989.

    Google Scholar 

  25. Podnieks, K. M., Comparing various concepts of function prediction, part I, in[28], vol.1 (1974) 68–81 (in Russian).

    Google Scholar 

  26. Rogers, H. Jr., Theory of recursive functions and effective computability, McGraw-Hill, 1967.

    Google Scholar 

  27. Shinohara, T., Polynomial-time inference of extended regular pattern languages. Proc. RIMS Symp. on Software Science and Engineering, Lecture Notes in Computer Science 147 (1983) 115–127.

    Google Scholar 

  28. Theory of Algorithms and Programs, vol.1, 2, 3. Barzdin, J., Ed., Latvian State University, Riga, 1974, 1975, 1977 (in Russian).

    Google Scholar 

  29. Trakhtenbrot, B. A. and Barzdin, J., Finite Automata: Behavior and synthesis. North-Holland, 1973.

    Google Scholar 

  30. Wiehagen, R., Limes-Erkennung rekursiver Funktionen durch spezielle Strategien. Journal of Information Processing and Cybernetics (EIK) 12 (1976) 93–99.

    Google Scholar 

  31. Wiehagen, R. and Zeugmann, T., Too much information can be too much for learning efficiently. Proc. Int. Workshop on Analogical and Inductive Inference, Lecture Notes in Artificial Intelligence, Oct. 1992.

    Google Scholar 

  32. Zeugmann, T., A-posteriori characterizations in inductive inference of recursive functions. Journal of Information Processing and Cybernetics (EIK) 19 (1983) 559–594.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shuji Doshita Koichi Furukawa Klaus P. Jantke Toyaki Nishida

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiehagen, R. (1993). From inductive inference to algorithmic learning theory. In: Doshita, S., Furukawa, K., Jantke, K.P., Nishida, T. (eds) Algorithmic Learning Theory. ALT 1992. Lecture Notes in Computer Science, vol 743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57369-0_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-57369-0_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57369-2

  • Online ISBN: 978-3-540-48093-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics