Skip to main content

Quantum Entanglement and the Communication Complexity of the Inner Product Function

  • Conference paper
  • First Online:
Quantum Computing and Quantum Communications (QCQC 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1509))

Abstract

We consider the communication complexity of the binary inner product function in a variation of the two-party scenario where the parties have an a priori supply of particles in an entangled quantum state. We prove linear lower bounds for both exact protocols, as well as for protocols that determine the answer with bounded-error probability. Our proofs employ a novel kind of “quantum„ reduction from a quantum information theory problem to the problem of computing the inner product. The communication required for the former problem can then be bounded by an application of Holevo’s theorem. We also give a speciffic example of a probabilistic scenario where entanglement reduces the communication complexity of the inner product function by one bit.

Research initiated while visiting the Université de Montréal and supported in part by Canada’s NSERC.

Research supported in part by Canada’s NSERC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Araki and E.H. Lieb, “Entropy inequalities„, Commun. Math. Phys., Vol. 18, 1970, pp. 160–170.

    Article  MathSciNet  Google Scholar 

  2. C.H. Bennett, E. Bernstein, G. Brassard, U. Vazirani, “Strengths and weaknesses of quantum computing„, SIAM J. on Comput., Vol. 26, No. 5, 1997, pp. 1510–1523.

    Article  MATH  MathSciNet  Google Scholar 

  3. C.H. Bennett, G. Brassard, C. Crépeau, R. Josza, A. Peres, W.K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels„, Phys. Rev. Lett., Vol. 70, 1993, pp. 1895–1899.

    Article  MATH  MathSciNet  Google Scholar 

  4. C.H. Bennett and S.J. Wiesner, “Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states„, Phys. Rev. Lett., Vol. 69, No. 20, 1992, pp. 2881–2884.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Bernstein, U. Vazirani, “Quantum Complexity Theory„, SIAM J. Comput., Vol. 26, No. 5, 1997, pp. 1411–1473.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Buhrman, R. Cleve, and W. van Dam, “Quantum Entanglement and Communication Complexity„, preprint available from the LANL quant-ph archive 9705033, 1997.

    Google Scholar 

  7. B. Chor and O. Goldreich, “Unbiased bits from weak sources of randomness and probabilistic communication complexity„, SIAM J. on Comput., Vol. 17, No. 2, pp. 230–261, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Cleve and H. Buhrman, “Substituting quantum entanglement for communication„, Phys. Rev. A, Vol. 56, No. 2, pp. 1201–1204, 1997.

    Article  Google Scholar 

  9. T.M. Cover and J.A. Thomas, Elements of Information Theory, John Wiley and Sons, 1991.

    Google Scholar 

  10. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be complete?„, Phys. Rev., Vol. 47, 1935, pp. 777–780.

    Article  MATH  Google Scholar 

  11. A.S. Holevo, “Bounds for the Quantity of Information Transmitted by a Quantum Communication Channel„, Problemy Peredachi Informatsii, Vol. 9, No. 3, 1973, pp. 3–11. English translation Problems of Information Transmission, Vol. 9, 1973, pp. 177–183.

    MATH  MathSciNet  Google Scholar 

  12. I. Kremer, “Quantum Communication„, Master’s Thesis, The Hebrew University of Jerusalem, 1995.

    Google Scholar 

  13. E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge University Press, 1997.

    Google Scholar 

  14. B.M. Terhal and J.A. Smolin, “Superfast quantum algorithms for coin weighing and binary search problems„, preprint available from the LANL quant-ph archive 9705041, 1997.

    Google Scholar 

  15. B. Schumacher, M. Westmoreland and W. K.Wootters, “Limitation on the amount of accessible information in a quantum channel„, Phys. Rev. Lett., Vol. 76, 1996, pp. 3453–3456.

    Article  Google Scholar 

  16. A.C. Yao, “Some complexity questions related to distributed computing„, Proc. of the 11th Ann. ACM Symp. on Theory of Computing, 1979, pp. 209–213.

    Google Scholar 

  17. A.C. Yao, “Quantum circuit complexity„, Proc. of the 34th Ann. IEEE Symp. on Foundations of Computer Science, 1993, pp. 352–361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cleve, R., van Dam, W., Nielsen, M., Tapp, A. (1999). Quantum Entanglement and the Communication Complexity of the Inner Product Function. In: Williams, C.P. (eds) Quantum Computing and Quantum Communications. QCQC 1998. Lecture Notes in Computer Science, vol 1509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49208-9_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-49208-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65514-5

  • Online ISBN: 978-3-540-49208-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics