Skip to main content

Abduction and Deduction in Geologic Hypermaps

  • Conference paper
  • First Online:
Advances in Spatial Databases (SSD 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1651))

Included in the following conference series:

Abstract

A geologic map is a 2-dimensional representation of an interpretation of 3-D phenomena. The work of a geologist consists mainly in (i) inferring subsurface structures from observed surface phenomena and (ii) building abductive models of events and processes that shaped them during the geologic past. In order to do this, chains of explanations are used to reconstruct the Earth history step-by-step. In this context, many interpretations may be associated with a given output. In this paper, we first present the general contexts of geologic map manipulation and design. We then propose a framework for geologic map designers which supports multiple interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Balovnev, M. Breunig, and A. B. Cremers. From GeoStore to GeoToolKit: The second step. In Advances in Spatial Databases, Lecture Notes in Computer Science, volume 1262, pages 223–238, Heidelberg/ Berlin/New York, 1997. Springer Verlag.

    Google Scholar 

  2. F. Bancilhon, C. Delobel, and P. C. Kanellakis, editors. Building an Object-Oriented Database Systems: The Story of O 2. Morgan Kaufmann, San Francisco, California, 1992.

    Google Scholar 

  3. F. Blyth. Geological Maps and Their Interpretation. Edward Arnold, London, 1976.

    Google Scholar 

  4. J.-D. Boissonnat and S. Nullans. Reconstruction of Geological Structures from Heterogeneous and Sparse Data. In Proc. 4th ACM GIS Workshop, 1996.

    Google Scholar 

  5. Association for Computing Machinery (ACM), editor. Communications of the ACM Special issue on Designing Hypermedia Applications, New York, August 1995.

    Google Scholar 

  6. J. DÖllner and K. Hinrichs. Object-Oriented 3D Modeling, Animation and Interaction. Journal of Visualization and Computer Animation, 8(1):33–64, 1997.

    Article  Google Scholar 

  7. M. Egenhofer and A. Frank. Object-Oriented Modeling in GIS: Inheritance and Propagation. In Proc. Auto-Carto 9, pages 588–598, 1989.

    Google Scholar 

  8. Inc. Environmental Systems Research Institute. Arcview GIS Version 2, 1996.

    Google Scholar 

  9. Inc. Environmental Systems Research Institute. Avenue: Customization and Application Development for Arcview, 1996.

    Google Scholar 

  10. D. Flewelling and M. Egenhofer. Using Spatial Archives Efectively. Int. Journal on Geographical Information Science (IJGIS), 13(1):1–8, 1999.

    Article  Google Scholar 

  11. R. H. Güting and M. Schneider. Realm-Based Spatial Data Types: The ROSE Algebra. The VLDB Journal, 4(2):243–286, April 1995.

    Article  Google Scholar 

  12. S. Houlding. 3D Geoscience Modeling: Computer Techniques for Geological Characterization. Springer-Verlag Inc., Berlin Heidelberg New-York, 1994.

    Google Scholar 

  13. S. Kübler, W. Skala, and A. Voisard. The Design and Development of a Geologic Hypermaps Prototype. In Proceedings of ISPRS Conference, 1998.

    Google Scholar 

  14. D. Powell. Interpretation of Geological Structures Through Maps. Langman Scientific and Technical, 1992.

    Google Scholar 

  15. M. Schneider. Spatial Data Types for Database Systems: Finite Resolution Geometry for Geographic Information systems, volume 1288 of Lecture Notes in Computer Science. Springer-Verlag, Berlin/Heidelberg/ New York, 1997.

    Google Scholar 

  16. T. R. Smith and J. Frew. Alexandria Digital Library. Communications of the ACM, 38(4):61–62, April 1995.

    Article  Google Scholar 

  17. US Geological Survey. Digital Geologic Maps Data Model, 1997. URL =http://www.usgs.gov/.

  18. M. Scholl and A. Voisard. Object-Oriented Database Systems for Geographic Applications: An Experiment With O2, 1992. Chapter 28 of [BDK92].

    Google Scholar 

  19. A. Voisard. Geologic Hypermaps are more than Clickable Maps! In Proceedings of the International ACM GIS Symposium, pages 14–19, 1998.

    Google Scholar 

  20. M. Worboys. Object-Oriented Approaches to Geo-Referenced Information. Int. Journal on Geographical Information Systems (IJGIS), 8(4), 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Voisard, A. (1999). Abduction and Deduction in Geologic Hypermaps. In: Güting, R.H., Papadias, D., Lochovsky, F. (eds) Advances in Spatial Databases. SSD 1999. Lecture Notes in Computer Science, vol 1651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48482-5_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-48482-5_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66247-1

  • Online ISBN: 978-3-540-48482-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics