Skip to main content

GaAs Substrates for High-Power Diode Lasers

  • Chapter
  • First Online:
High-Power Diode Lasers

Part of the book series: Topics in Applied Physics ((TAP,volume 78))

Abstract

GaAs substrate crystals with low dislocation density (Etch-Pit Density (EPD) < 500 cm−2) and Si-doping (≈ 1018 cm−3) are required for the epitaxial production of high-power diode-lasers. Large-size wafers (≥ 3 in) are needed for reducing the manufacturing costs. These requirements can be fulfilled by the Vertical Bridgman (VB) and Vertical Gradient Freeze (VGF) techniques. For that purpose we have developed proper VB/VGF furnaces and optimized the thermal as well as the physico-chemical process conditions. This was strongly supported by extensive numerical process simulation. The modeling of the VGF furnaces and processes was made by using a new computer code called CrysVUN++, which was recently developed in the Crystal Growth Laboratory in Erlangen.

GaAs crystals with diameters of 2 and 3 in were grown in pyrolytic Boron Nitride (pBN) crucibles having a small-diameter seed section and a conical part. Boric oxide was used to fully encapsulate the crystal and the melt. An initial silicon content in the GaAs melt of c(Simelt) = 3 × 1019 cm−3 has to be used in order to achieve a carrier concentration of n = (0.8−2) × 1018 cm−3, which is the substrate specification of the device manufacturer of the diode-laser. The EPD could be reduced to values between 500 cm−2 and 50 cm−2 with a Si-doping level of 8 × 1017 to 1 × 1018 cm−3. Even the 3 in wafers have rather large dislocation-free areas. The lowest EPDs (< 100 cm−2) are achieved for long seed wells of the crucible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. T. J. Hurle: Crystal Pulling from the Melt (Springer, Berlin, Heidelberg 1993)

    Google Scholar 

  2. J. Völkl: “Stress in the Cooling Crystal” in D. T. J. Hurle (ed.): Handbook of Crystal Growth, Vol 2 (Elsevier Science, Amsterdam 1996) p. 821

    Google Scholar 

  3. M. Tatsumi, T. Kawase, Y. Iguchi, K. Fujita, M. Yamada: in Proc. 8th Conf. Semi-insulating III-V Materials, Warsaw, PL, Tech. Dig. (1994) p. 11

    Google Scholar 

  4. P. Rudolph: Profilzüchtung von Einkristallen (Akademie-Verlag, Berlin 1982)

    Google Scholar 

  5. G. Tamman: Lehrbuch der Metallographie (Voss, Leipzig 1914)

    Google Scholar 

  6. P. W. Bridgman: Proc. Am. Acad. Sci. 60, 305 (1925)

    Article  Google Scholar 

  7. D. C. Stockbarger: Proc. Am. Acad. Sci. 60, 133 (1925)

    Google Scholar 

  8. W. A. Gault, E. M. Monberg, J. E. Clemans: J. Cryst. Growth 74, 149 (1986)

    Article  Google Scholar 

  9. E. Monberg: “Bridgman and Related Growth Techniques” in D. T. J. Hurle (ed.): Handbook of Crystal Growth, Vol 2 (Elsevier Science, Amsterdam 1996) p. 51

    Google Scholar 

  10. G. Müller: in Crystal Growth from the Melt, Crystals 12 (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  11. M. Althaus: Forschungsbericht Jül-3252 (Forschungszentrum Jülich, Jülich 1996)

    Google Scholar 

  12. H. Wenzl, W. A. Oates, K. Mika: “Defect Thermodynamics and Phase Diagrams in Compound Crystal Growth Processes” in D. T. J. Hurle (ed.): Handbook of Crystal Growth, Vol 1A (Elsevier Science, Amsterdam 1993) p. 103

    Google Scholar 

  13. R. Karl: Chemisch-thermodynamische Untersuchung des Systems GaAs/B2O3/Gasphase; ein Beitrag zur Prozeßchemie des LEC-Verfahrens, Dissertation RWTH Aachen (1996)

    Google Scholar 

  14. S. Hegewald, K. Klein, C. Frank, M. John, E. Buhrig: Cryst. Res. Technol. 4, 567 (1994)

    Google Scholar 

  15. W. G. Pfann: J. Metals 4, 747 (1952)

    Google Scholar 

  16. J. Amon: Züchtung von versetzungsarmem, Silicium-dotiertem GaAs mit dem vertikalen Gradient-Freeze-Verfahren, Dissertation, University Erlangen-Nuremberg, Germany (1998)

    Google Scholar 

  17. A. G. Elliot, C. L. Wei, R. Farraro, G. Woolhouse, M. Scott, R. Hiskes: J. Cryst. Growth 70, 169–178 (1984)

    Article  ADS  Google Scholar 

  18. A. Flat: J. Cryst. Growth 109, 224 (1991)

    Article  ADS  Google Scholar 

  19. J. B. Mullin, A. Royle, S. Benn: J. Cryst. Growth 50, 625–637 (1980)

    Article  ADS  Google Scholar 

  20. R. Fornari: J. Cryst. Growth 94, 433 (1989)

    Article  ADS  Google Scholar 

  21. R. K. Willardson, W. P. Allred: in J. Franks (ed.): Inst. Phys. Conf. Ser. 3 (Institute of Physics, London 1967) p. 35

    Google Scholar 

  22. O. V. Pelevin, I. N. Shershakova, F. A. Gimel’farb, M. G. Mil’vidskii, T. A. Ukhorskaya: Soviet-Phys. Cryst. 16, 528 (1971)

    Google Scholar 

  23. P. D. Greene: J. Cryst. Growth 50, 612 (1980)

    Article  ADS  Google Scholar 

  24. G. Gärtner, C. Hannig, G. Schwichtenberg, E. Buhrig: Züchtung und Charakterisierung von Si-dotierten GaAs-Einkristallen nach dem VGF-Verfahren, 26. DGKK Jahrestagung, March 1996, Cologne, Germany

    Google Scholar 

  25. G. Frigerio, C. Mucchino: J. Cryst. Growth 99, 685 (1990)

    Article  ADS  Google Scholar 

  26. ChemSage Handbook (GTT Technologies, Herzogenrath 1998)

    Google Scholar 

  27. W. A. Oates, H. Wenzl: J. Cryst. Growth 191, 303 (1998)

    Article  ADS  Google Scholar 

  28. B. Pödör: J. Appl. Phys. 55, 3603–3604 (1984)

    Article  ADS  Google Scholar 

  29. K. R. Elliot: Appl. Phys. Lett. 42, 274–276 (1983)

    Article  ADS  Google Scholar 

  30. H. Boudriot, W. Siegel, K. Deus, E. Buhrig: Solid-State Commun. 89, 889–891 (1994)

    Article  ADS  Google Scholar 

  31. K. Hashio, S. Sawada, M. Tatsumi, K. Fujita, S. Akai: J. Cryst. Growth 173, 33 (1997)

    Article  ADS  Google Scholar 

  32. J. Völkl, G. Müller: J. Cryst. Growth 97, 136 (1989)

    Article  Google Scholar 

  33. F. Orito, H. Okada, M. Nakajima, T. Fukada, T. Kajimura: J. Electron. Mater. 15, 87 (1986)

    Article  ADS  Google Scholar 

  34. E. D. Bourret, M. G. Tabache, J. W. Beeman, A. G. Elliot, M. Scott: J. Cryst. Growth 85, 275 (1987)

    Article  ADS  Google Scholar 

  35. J. Weyher, J. Van de Ven: J. Cryst. Growth 63, 285 (1983)

    Article  ADS  Google Scholar 

  36. J. Weyher, W. J. P. Van Enckevort: J. Cryst. Growth 63, 292 (1983)

    Article  ADS  Google Scholar 

  37. J. Amon, J. Härtwig, W. Ludwig, G. Müller: J. Cryst. Growth 198/199, 367 (1999)

    Article  Google Scholar 

  38. B. K. Tanner: X-Ray Diffraction Topography (Pergamon, Oxford 1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, G., Berwian, P., Buhrig, E., Weinert, B. (2000). GaAs Substrates for High-Power Diode Lasers. In: Diehl, R. (eds) High-Power Diode Lasers. Topics in Applied Physics, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47852-3_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-47852-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66693-6

  • Online ISBN: 978-3-540-47852-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics