Skip to main content

Proof Complexity of Pigeonhole Principles

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2295))

Included in the following conference series:

Abstract

The pigeonhole principle asserts that there is no injective mapping from m pigeons to n holes as long as m > n. It is amazingly simple, expresses one of the most basic primitives in mathematics and Theoretical Computer Science (counting) and, for these reasons, is probably the most extensively studied combinatorial principle. In this survey we try to summarize what is known about its proof complexity, and what we would still like to prove.We also mention some applications of the pigeonhole principle to the study of efficient provability of major open problems in computational complexity, as well as some of its generalizations in the form of general matching principles.

Supported by The von Neumann Fund

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Urquhart, A.: The complexity of propositional proofs. Bulletin of Symbolic Logic 1 (1995) 425–467

    Article  MATH  MathSciNet  Google Scholar 

  2. Krajíček, J.: Bounded arithmetic, propositional logic and complexity theory. Cambridge University Press (1995)

    Google Scholar 

  3. Razborov, A.: Lower bounds for propositional proofs and independence results in Bounded Arithmetic. In auf der Heide, F.M., Monien, B., eds.: Proceedings of the 23rd ICALP, Lecture Notes in Computer Science, 1099, NewYork/Berlin, Springer-Verlag (1996) 48–62

    Google Scholar 

  4. Beame, P., Pitassi, T.: Propositional proof complexity: Past, present and future. Technical Report TR98-067, Electronic Colloquium on Computational Complexity (1998)

    Google Scholar 

  5. Pudlák, P.: The lengths of proofs. In Buss, S., ed.: Handbook of Proof Theory. Elsevier (1998) 547–637

    Google Scholar 

  6. Cook, S.A., Reckhow, A.R.: The relative efficiency of propositional proof systems. Journal of Symbolic Logic 44 (1979) 36–50

    Article  MATH  MathSciNet  Google Scholar 

  7. Reckhow, R.A.: On the lengths of proofs in the propositional calculus. Technical Report 87, University of Toronto (1976)

    Google Scholar 

  8. Maciel, A., Pitassi, T., Woods, A.: A new proof of the weak pigeonhole principle. Manuscript (1999)

    Google Scholar 

  9. Håstad, J.: Computational limitations on Small Depth Circuits. PhD thesis, Massachusetts Institute of Technology (1986)

    Google Scholar 

  10. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proceedings of the 28th ACM STOC. (1996) 174–183

    Google Scholar 

  11. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow — resolution made simple. In: Proceedings of the 31st ACM STOC. (1999) 517–526

    Google Scholar 

  12. Alekhnovich, M., Ben-Sasson, E., Razborov, A., Wigderson, A.: Pseudorandom generators in propositional complexity. In: Proceedings of the 41st IEEE FOCS. (2000) 43–53

    Google Scholar 

  13. Razborov, A.: Improved resolution lower bounds for the weak pigeonhole principle. Technical Report TR01-055, Electronic Colloquium on Computational Complexity (2001)Available at ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/2001/TR01-055/index.html.

  14. Haken, A.: The intractability or resolution. Theoretical Computer Science 39 (1985) 297–308

    Article  MATH  MathSciNet  Google Scholar 

  15. Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. Journal of Symbolic Logic 52 (1987) 916–927

    Article  MATH  MathSciNet  Google Scholar 

  16. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting plane proofs. Discrete Applied Mathematics 18 (1987) 25–38

    Article  MATH  MathSciNet  Google Scholar 

  17. Ajtai, M.: The complexity of the pigeonhole principle. In: Proceedings of the 29th IEEE Symposium on Foundations of Computer Science. (1988) 346–355

    Google Scholar 

  18. Bellantoni, S., Pitassi, T., Urquhart, A.: Approximation of small depth Frege proofs. SIAM Journal on Computing 21 (1992) 1161–1179

    Article  MATH  MathSciNet  Google Scholar 

  19. Pitassi, T., Beame, P., Impagliazzo, R.: Exponential lower bounds for the pigeonhole principle. Computational Complexity 3 (1993) 97–140

    Article  MATH  MathSciNet  Google Scholar 

  20. Krajíček, J., Pudlák, P., Woods, A.R.: Exponential lower bounds to the size of bounded depth Frege proofs of the pigeonhole principle. Random Structures and Algorithms 7 (1995) 15–39

    Article  MathSciNet  MATH  Google Scholar 

  21. Razborov, A.: Lower bounds for the polynomial calculus. Computational Complexity 7 (1998) 291–324

    Article  MATH  MathSciNet  Google Scholar 

  22. Impagliazzo, R., Pudlák, P., Sgall, J.: Lower bounds for the polynomial calculus and the Groebner basis algorithm. Computational Complexity 8 (1999) 127–144

    Article  MATH  MathSciNet  Google Scholar 

  23. Alekhnovich, M., Razborov, A.: Lower bounds for the polynomial calculus: non-binomial case. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science. (2001) 190–199

    Google Scholar 

  24. Riis, S.: Independence in Bounded Arithmetic. PhD thesis, Oxford University (1993)

    Google Scholar 

  25. Paris, J.B., Wilkie, A.J., Woods, A.R.: Provability of the pigeonhole principle and the existence of infinitely many primes. Journal of Symbolic Logic 53 (1988) 1235–1244

    Article  MATH  MathSciNet  Google Scholar 

  26. Krajíček, J.: On the weak pigeonhole principle. Fundamenta Mathematicae 170 (2001) 123–140

    Article  MathSciNet  MATH  Google Scholar 

  27. Buss, S., Turán, G.: Resolution proofs of generalized pigeonhole principle. Theoretical Computer Science 62 (1988) 311–317

    Article  MATH  MathSciNet  Google Scholar 

  28. Atserias, A.: Improved bounds on the weak pigeonhole principle and infinitely many primes from weaker axioms. In J. Sgall, A. Pultr, P.K., ed.: Proceedings of the 26th International Symposium on the Mathematical Foundations of Computer Science (Marianske Lazne, August’ 01), Lecture Notes in Computer Science 2136, Springer-Verlag (2001) 148–158

    Google Scholar 

  29. Atserias, A., Bonet, M.L., Esteban, J.L.: Lower bounds for the weak pigeonhole principle beyond resolution. To appear in Information and Computation (2000)

    Google Scholar 

  30. Buss, S., Pitassi, T.: Resolution and the weak pigeonhole principle. In: Proceedings of the CSL97, Lecture Notes in Computer Science, 1414, NewYork/Berlin, Springer-Verlag (1997) 149–156

    Google Scholar 

  31. Razborov, A., Wigderson, A., Yao, A.: Read-once branching programs, rectangular proofs of the pigeonhole principle and the transversal calculus. In: Proceedings of the 29th ACM Symposium on Theory of Computing. (1997) 739–748

    Google Scholar 

  32. Pitassi, T., Raz, R.: Regular resolution lower bounds for the weak pigeonhole principle. In: Proceedings of the 33rd ACM Symposium on the Theory of Computing. (2001) 347–355

    Google Scholar 

  33. Raz, R.: Resolution lower bounds for the weak pigeonhole principle. Technical Report TR01-021, Electronic Colloquium on Computational Complexity (2001)

    Google Scholar 

  34. Razborov, A.: Resolution lower bounds for the weak functional pigeonhole principle. Manuscript, available at http://www.mi.ras.ru/~razborov/matching.ps (2001)

  35. Razborov, A.: Resolution lower bounds for perfect matching principles. Manuscript, available at http://www.mi.ras.ru/~razborov/matching.ps (2001)

  36. Razborov, A.: Bounded Arithmetic and lower bounds in Boolean complexity. In Clote, P., Remmel, J., eds.: Feasible Mathematics II. Progress in Computer Science and Applied Logic, vol. 13. Birkhäuser (1995) 344–386

    Google Scholar 

  37. Dantchev, S., Riis, S.: “Planar” tautologies hard for Resolution. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science. (2001) 220–229

    Google Scholar 

  38. Alekhnovich, M.: Mutilated chessboard is exponentially hard for resolution. Manuscript (2000)

    Google Scholar 

  39. Beame, P., Riis, S.: More on the relative strength of counting principles. In Beame, P., Buss, S., eds.: Proof Complexity and Feasible Arithmetics: DIMACS workshop, April 21–24, 1996, DIMACS Series in Dicrete Mathematics and Theoretical Computer Science, vol. 39. American Math. Soc. (1997) 13–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Razborov, A.A. (2002). Proof Complexity of Pigeonhole Principles. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds) Developments in Language Theory. DLT 2001. Lecture Notes in Computer Science, vol 2295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46011-X_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-46011-X_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43453-5

  • Online ISBN: 978-3-540-46011-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics