Skip to main content

Algorithms for Local Alignment with Length Constraints*

  • Conference paper
  • First Online:
LATIN 2002: Theoretical Informatics (LATIN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2286))

Included in the following conference series:

Abstract

The local sequence alignment problem is the detection of similar subsequences in two given sequences of lengths nm. Unfortunately the common notion of local alignment suffers from some wellknown anomalies which result from not taking into account the lengths of the aligned subsequences. We introduce the length restricted local alignment problem which includes as a constraint an upper limit T on the length of one of the subsequences to be aligned.We propose an efficient approximation algorithm, which finds a solution satisfying the length bound, and whose score is within difference Δ of the optimum score for any given positive integer Δ. The algorithm runs in time O (nmT/Δ) using O (mT/Δ) space. We also introduce the cyclic local alignment problem and show how our idea can be applied to this case as well. This is a dual approach to the well-known cyclic edit distance problem.

Supported in part by NSF Grant No.CCR.9821038.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.N. Alexandrov and V.V. Solovyev. Statistical significance of ungapped alignments. Pacific Symposium on Biocomputing (PSB-98), (eds. R. Altman, A. Dunker, L. Hunter, T. Klein), pages 463–472, 1998.

    Google Scholar 

  2. S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. Gapped Blast and Psi-Blast:a new generation of protein database search programs. Nucleic Acids Research 25:3389–3402,1997.

    Article  Google Scholar 

  3. A.N. Arslan, Ö. Eğecioğlu, and P.A. Pevzner. A new approach to sequence comparison:Normalized local alignment. Bioinformatics 17(4):327–337, 2001.

    Article  Google Scholar 

  4. H. Bunke and U. Bühler. Applications of approximate string matching to 2d shape recognition. Pattern Recognition 26(12):1797–1812, 1993.

    Article  Google Scholar 

  5. K-L. Chung. An improved algorithm for solving the banded cyclic string-to-string correction problem. Theoretical Computer Science 201:275–279, 1998.

    Article  MathSciNet  Google Scholar 

  6. K.S. Fu and S.Y. Lu. Size normalization and pattern orientation problems in syntactics clustering. IEEE Trans. Systems Man Cybernet 9:55–58, 1979.

    Article  Google Scholar 

  7. J.W. Gorman, O.R. Mitchell, and F.P. Kuhl. Partial shape recognition using dynamic programming. IEEE Trans. Pattern Anal. Mech. Intell. PAMI-10 pages 257–266, 1988.

    Article  Google Scholar 

  8. J. Gregor and M.G. Thomason. Efficient dynamic programming alignment of cyclic shifts by shift elimination. Pattern Recognition 29(7):1179–1185, 1996.

    Article  Google Scholar 

  9. G.M. Landau, E.W. Myers, and J.P. Schmidt. Incremental string comparison. Siam J. Comput., 27(2):557–582, 1998.

    Article  MathSciNet  Google Scholar 

  10. M. Maes.On a cyclic string-to-string correction problem. Information Processing Letters 35:73–78, 1990.

    Article  MathSciNet  Google Scholar 

  11. T.F. Smith and M.S. Waterman.The identification of common molecular subsequences, J. of Molecular Biology 147:195–197, 1981.

    Article  Google Scholar 

  12. S. Uliel, A. Fliess, A. Amir, and R. Unger. A simple algorithm for detecting circular permutations in proteins. Bioinformatics 15(11):930–936, 1999.

    Article  Google Scholar 

  13. M.S. Waterman. Introduction to computational biology. Chapman & Hall, 1995.

    Google Scholar 

  14. Z. Zhang, P. Berman, and W. Miller. Alignments without low-scoring regions. J. Comput. Biol., 5:197–200, 1998.

    Article  Google Scholar 

  15. Z. Zhang, P. Berman, T. Wiehe, and W. Miller. Post-processing long pairwise alignments. Bioinformatics 15:1012–1019, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arslan, A.N., Eğecioğlu, Ö. (2002). Algorithms for Local Alignment with Length Constraints* . In: Rajsbaum, S. (eds) LATIN 2002: Theoretical Informatics. LATIN 2002. Lecture Notes in Computer Science, vol 2286. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45995-2_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45995-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43400-9

  • Online ISBN: 978-3-540-45995-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics