Skip to main content

On p-adic Point Counting Algorithms for Elliptic Curves over Finite Fields

  • Conference paper
  • First Online:
Algorithmic Number Theory (ANTS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2369))

Included in the following conference series:

Abstract

Let p be a prime and let q:= p N. Let E be an elliptic curve over F q. We are interested in efficient algorithms to compute the order of the group E(F q) of F q-rational points of E. An l-adic algorithm, known as the SEA algorithm, computes #E(F q) with O((logq)4+ɛ) bit operations (with fast arithmetic) and O((logq)2) memory. In this article, we survey recent advances in p-adic algorithms. For a fixed small p, the computational complexity of the known fastest p-adic point counting algorithm is O(N 3+ɛ) in time and O(N 2) in space. If we accept some precomputation depending only on p and N or a certain restriction on N, the time complexity is reduced to O(N 2.5+ɛ) still with O(N 2) space requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A. V., Hopcroft, J. E., Ullman, J. D.: “The design and analysis of computer algorithms”. Reading, Mass.: Addison-Wesley pub. 1974.

    MATH  Google Scholar 

  2. Ankeny, N.C.: The least quadratic non residue. Ann. of Math. 55 (1952) 65–72.

    Article  MathSciNet  Google Scholar 

  3. Blake, I.F., Seroussi, G., Smart, N.P.: “Elliptic curves in cryptography”. London Math. Soc. Lecture Note Series, 265. Cambridge: Cambridge U.P. 1999.

    Google Scholar 

  4. Borwein, J.-M., Borwein, P.-B.: “Pi and the AGM”. Canadian Math. Soc. series of monographs and Adv. texts., New York: Wiley-Interscience Pub. 1987.

    Google Scholar 

  5. Bost, J.-B., Mestre, J.-F.: Moyenne arithmético-géométrique et périodes des courbes de genre 1 et 2. Gaz. Math. 38 (1988) 36–64.

    MATH  MathSciNet  Google Scholar 

  6. Cantor, D. G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inform. 28 (1991) 693–701.

    Article  MATH  MathSciNet  Google Scholar 

  7. Cassels, J. W. S.: A note on the division values of ℘(u). Proc. Cambridge Philos. Soc. 45 (1949) 167–172.

    Article  MATH  MathSciNet  Google Scholar 

  8. Chebyshev, P.L.: Mémoire sur les nombres premiers. J. Math. Pures Appl. 17 (1852) 366–390 (∄uvres, I-5).

    Google Scholar 

  9. Cohen, H.: “A course in computational algebraic number theory”. GTM, 138. Barlin: Springer-Verlag 1993.

    Google Scholar 

  10. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9 (1990) 251–280.

    Article  MATH  MathSciNet  Google Scholar 

  11. Couveignes, J.-M.: “Quelques calculs en théorie des nombres”. Université de Bordeaux I: Thése 1994.

    Google Scholar 

  12. Couveignes, J.-M.: Computing l-isogenies using the p-torsion, Algorithmic number theory (Telence, 1996), Lecture Notes in Comput. Sci., 1122, Barlin: Springer, 1996.

    Google Scholar 

  13. Couveignes, J.-M., Morain, F.: Schoof’s algorithm and isogeny cycles, Algorithmic number theory (Ithaca, NY, 1994), Lect. Notes in Comput. Sci., 877, 43–58, Barlin: Springer, 1994.

    Google Scholar 

  14. Dieudonné, J.: Sur les fonctions continues p-adiques. Bull. Sci. Math. 68 (1944) 79–85.

    MATH  MathSciNet  Google Scholar 

  15. Dwork, B.: On the rationality of the zeta functions of an algebraic variety. Amer. J. Math. 82 (1960) 631–648.

    Article  MATH  MathSciNet  Google Scholar 

  16. Edwards, H.M.: “Riemann’s zeta function”. New York and London: Academic Press 1974.

    MATH  Google Scholar 

  17. Elkies, N.D.: Elliptic and modular curves over finite fields and related computational issues, Computational perspectives on number theory (Chicago, IL, 1995), AMS/IP Stud. Adv. Math., 7, 21–76, Providence, RI: AMS, 1998.

    Google Scholar 

  18. Enge, A.: “Elliptic curves and their applications to cryptography: An introduction”. Boston, Dordrecht, London: Kluwer Acad. Pub. 1999.

    Google Scholar 

  19. Fouquet, M., Gaudry, P., Harley, R.: An extension of Satoh’s algorithm and its implementation. J. Ramanujan Math. Soc. 15 (2000) 281–318.

    MATH  MathSciNet  Google Scholar 

  20. Frey, G.: Applications of arithmetical geometry to cryptographic constructions, Finite fields and applications (Augsburg, 1999), 128–161, Barlin: Springer, 2001.

    Google Scholar 

  21. Gaudry, P.: Algorithms for counting points on curves, (2001) Slides at ECC2001, Waterloo, Oct. 31, 2001, Available at http://www.cacr.math.uwaterloo.ca/-conferences/2001/ecc/slides.html.

  22. Gaudry, P., Gürel, N.: An extension of Kedlaya’s algorithm for counting points of superelliptic curves, Advances in Cryptology-ASIACRYPT 2001, Lect. Notes in Comput. Sci., 2248, 480–494, ed. Boyd, C., Berlin, Heidelbert: Springer Verlag, 2001.

    Google Scholar 

  23. Gaudry, P., Harley, R.: Counting points on hyperelliptic curves over finite fields, ANTS-IV, Lect. Notes in Comput. Sci., 1838, 313–332, Springer, 2000.

    Google Scholar 

  24. Harley, R.: Counting points with the arithmetic-geometric mean(joint work with J.-F. Mestre and P. Gaudry), Eurocrypt 2001, Rump session, 2001.

    Google Scholar 

  25. Harley, R., et al.: On the generation of secure elliptic curves using an arithmetic-geometric mean iteration, (in preparation).

    Google Scholar 

  26. Henniart, G., Mestre, J.-F.: Moyenne arithmético-géométrique p-adique. C.R. Acad. Sci. Paris Sér. I Math. 308 (1989) 391–395.

    MATH  MathSciNet  Google Scholar 

  27. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata. Soviet physics doklady 7 (1963) 595–596.

    Google Scholar 

  28. Kedlaya, K.: Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology, (2001) Preprint, available at http://arXiv.org/abs/math/0105031.

  29. Kim, H., Park, J., Cheon, J., Park, J., Kim, J., Hahn, S.: Fast elliptic curve point counting using Gaussian Normal Basis, (2001) preprint.

    Google Scholar 

  30. Knuth, D.E.: “Seminumerical algorithm”. The art of computer programming, 2. Reading, Mass.: Addison-Wesley Pub. Co. 1969.

    Google Scholar 

  31. Koblitz, N.: “p-adic analysis: a short course on recent work”. London Math. Soc. Lect. Note Ser., 46. Cambridge-New York: Cambridge University Press 1980.

    MATH  Google Scholar 

  32. Koblitz, N.: “p-adic numbers, p-adic analysis, and zeta-functions (2nd ed.)”. GTM, 58. New York: Springer 1984.

    Google Scholar 

  33. Lauder, A., Wan, D.: Computing zeta functions of Artin-Schreier curves over finite fields, (2001) preprint.

    Google Scholar 

  34. Lauder, A., Wan, D.: Counting points on varieties over finite fields of small characteristic, (2001) preprint.

    Google Scholar 

  35. Lercier, R.: Computing isogenies in F2 n, Algorithmic number theory II(Talence, 1996), Lecture Notes in Comput. Sci., 1122, 197–212, Berlin: Springer, 1996.

    Google Scholar 

  36. Lubin, J., Serre, J.-P., Tate, J.: Elliptic curves and formal groups, (1964) Mimeographed notes, available at http://www.ma.utexas.edu/users/voloch/lst.-html.

  37. Matsuo, K., Chao, J., Tsujii, S.: An improved baby step giant step algorithm for point counting of hyperelliptic curves over finit fields, This volume, 2002.

    Google Scholar 

  38. Messing, W.: “The crystals associated to Barsotti-Tate groups: with applications to Abelian schemes”. Lect. Notes in Math., 264. Berin-Heidelberg-New York: Springer 1972.

    MATH  Google Scholar 

  39. Monsky, P.: Formal cohomology. II. The cohomology of sequence of a pair. Ann. of Math. 88 (1968) 218–238.

    Article  MathSciNet  Google Scholar 

  40. Monsky, P.: Formal cohomology. III. Fixed point theorems. Ann. of Math. 93 (1971) 315–343.

    Article  MathSciNet  Google Scholar 

  41. Monsky, P., Washinitzer, G.: Formal cohomology. I. Ann. of Math. 88 (1968) 181–217.

    Article  MathSciNet  Google Scholar 

  42. Montgomery, H.L.: “Topics in multiplicative number theory”. Lect. Notes in Math., 227. Berlin, Heidelberg: Springer 1971.

    MATH  Google Scholar 

  43. Paterson, M. S., Stockmeyer, L. J.: On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J. Comput. 2 (1973) 60–67.

    Article  MATH  MathSciNet  Google Scholar 

  44. Poonen, B.: Computational aspects of curves of genus at least 2, Algorithmic number theory II, Lect. Notes in Comput. Sci., 1122, 283–306, ed. Cohen, H., Berlin: Springer, 1996.

    Google Scholar 

  45. Satoh, T.: The canonical lift of an ordinary elliptic curve over a finite field and its point counting. J. Ramanujan Math. Soc. 15 (2000) 247–270.

    MATH  MathSciNet  Google Scholar 

  46. Satoh, T., Skjernaa, B., Taguchi, Y.: Fast Computation of Canonical Lifts of Elliptic curves and its Application to Point Counting, (2001) preprint.

    Google Scholar 

  47. Schönhage, A.: Asymptotically fast algorithms for the numerical multiplication and division of polynomials with complex coefficients, Computer algebra (Marseille, 1982), Lect. Notes in Comput. Sci., 144, 3–15, Berlin-New York: Springer, 1982.

    Google Scholar 

  48. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7 (1971) 281–292.

    Article  MATH  Google Scholar 

  49. Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp. 44 (1985) 483–494.

    Article  MATH  MathSciNet  Google Scholar 

  50. Schoof, R.: Counting points on elliptic curves over finite fields. J. Théor. Nombres Bordeaux 7 (1995) 219–254.

    MATH  MathSciNet  Google Scholar 

  51. Silverman, J. H.: “The arithmetic of elliptic curves”. GTM, 106. Berlin-Heidelberg-New York: Springer 1985.

    Google Scholar 

  52. Skjernaa, B.: Satoh’s algorithm in characteristic 2, (2000) preprint, (to appear in Math. Comp.).

    Google Scholar 

  53. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13 (1969) 354–356.

    Article  MATH  MathSciNet  Google Scholar 

  54. Vélu, J.: Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris. 273 (1971) 238–241.

    MATH  Google Scholar 

  55. Vercauteren, F., Preneel, B., Vandewalle, J.: A memory efficient version of Satoh’s algorithm, Advances in Cryptology-Eurocrypt 2001 (Innsbruck, Austria, May 2001), Lect. Notes in Comput. Sci., 2045, 1–13, ed. Pfitzmann, B., Berlin, Heidelberg: Springer Verlag, 2001.

    Google Scholar 

  56. Wan, D.: Computing zeta functions over finite fields, Finite fields: theory, applications, and algorithms (Waterloo, ON, 1997), Contemp. Math., 225, 131–141, Providence, RI: AMS, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Satoh, T. (2002). On p-adic Point Counting Algorithms for Elliptic Curves over Finite Fields. In: Fieker, C., Kohel, D.R. (eds) Algorithmic Number Theory. ANTS 2002. Lecture Notes in Computer Science, vol 2369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45455-1_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45455-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43863-2

  • Online ISBN: 978-3-540-45455-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics